Use of a low-cost sensor network to estimate exposures and track pollutant chemistry during the 2018 Kīlauea eruption

Presented ByBen Crawford, University of Colorado, Denver

Description: The Lower East Rift Zone (LERZ) eruption of Kīlauea Volcano (Hawai‘i Island, HI, May-August 2018) destroyed hundreds of homes and displaced thousands of people, and represented an extreme air quality event for the entire region. Exceedingly high levels of sulfur dioxide (SO2) were introduced directly into a residential area, exposing residents to potentially dangerous levels of the toxic gas; further, the oxidative transformation of SO2 to sulfuric acid (H2SO4) led to elevated levels of particulate matter (PM) to communities downwind of the eruption. In order to provide improved estimates of residents’ exposures to volcanic pollutants, we deployed a network of low-cost sensors (LCS) across the island. This consisted of ~30 sensor nodes measuring SO2 and PM; nodes were run on solar-rechargeable batteries and sent data in real time to a central server via 3G. This provided time-resolved estimates of the population’s exposures to both pollutants, as well as estimates of the SO2-to-PM conversion rate, with much finer spatial resolution than complementary measurement techniques (satellite measurements, regulatory monitoring) can provide. This work also serves as a case study for the use of LCS for measurements near an emissions hotspot as well as the rapid deployment of LCS networks during AQ emergencies; lessons learned and future challenges will be discussed.

Click here for presentation video!

Tags