

Ecologically-Valid, Multimodal Data Collection Platforms to Measure the Effects of Indoor Air Quality on Sleep Quality

Hagen Fritz, Kerry Kinney, David Schnyer, Zoltan Nagy May 12th, 2022 Air Sensors International Conference

Study Design

~250,000 data points

CO₂ TVOCs

CO Temperature

PM Relative Humidity

GPS

ensure participant is home

Sleep Survey

(n = 177)

4 subjective sleep metrics

Detect Sleep Events

(n = 263)

ensure bedroom is occupied

Sleep Monitoring

3 *objective* sleep metrics

20 Participants

11 weeks during Summer 2020

Paper in review. All software, hardware, and design files available: github.com/intelligent-environments-lab/bevo_iaq

Filtering IAQ Data

Wearable Fitness Tracker Identify sleep events

Compare GPS coordinates to home address

BEVO BeaconCheck CO₂ and T

Processing IAQ Data

Describe nightly IAQ measurements with median value

Compare to standards to determine nights with poor IAQ

Parameter	Threshold	From	Notes
TVOC	200 ppb	WHO	Twice sensory irritation
CO_2	1100 ppm	ASHRAE	Based on Standard 62.2
CO	4 ppm	WHO	Maximum 24-hour exposure
$PM_{2.5}$	$12~\mu\mathrm{g/m^3}$	US EPA	Half NAAQS annual exposure
Temperature	$25.2^{\circ}\text{C} (77.4^{\circ}\text{F})$	This Study	median nightly concentration

low high

Summary of Results

Elevated TVOCs and PM_{2.5} associated with **improved** sleep quality

Elevated CO, CO₂, and T associated with **degraded** sleep quality

SOL decreased when CO₂ or T was high

Elevated TVOCs and PM_{2.5} altered sleep staging

IAQ	Sleep Quality Metrics		
Parameter	Self-Report	Fitbit	
† TVOC		†TST, †REM:nREM	
$\uparrow CO$	† NAW	\downarrow TST, \downarrow SE	
$\uparrow \mathrm{CO}_2$	\downarrow restful, \downarrow SOL	$\downarrow TST$	
$\uparrow \mathrm{PM}_{2.5}$	\uparrow restful, \downarrow NAW	↑ SE, ↓REM:nREM	
$\uparrow T$	\downarrow TST, \downarrow NAW, \downarrow SOL	$\downarrow TST$	

TST: Total Sleep Time

NAW: Awakenings

SOL: Sleep Latency

SE: Sleep Efficiency

REM: Rapid-Eye-Movement

Conclusion

CGS for IAQ applications provide advantages over reference monitors:

- Affordability
 Scalable
 Availability
 Hassle

- Application

CGS can help address questions in an ecologically-valid manner

Data fusion helps improve accuracy/confidence of results

IAQ can affect objective and subjective measures of sleep

Fritz, Hagen, et al. "Data fusion of mobile and environmental sensing devices to understand the effect of the indoor environment on measured and self-reported sleep quality." Building and Environment 214 (2022): 108835.

Thank you!

Contact: hagenfritz@utexas.edu

Dr. Zoltan Nagy Sepehr Bastami

Dr. Kerry Kinney

Dr. Pawel Misztal

Kingsley Nweye Lau

Lauren Chen

Dr. David Schnyer

Anibal Heinsfeld

Calvin Lin

Wendy Zhang

Dr. Peter Wu

Melissa Miller

Dr. Cameron Craddock Robin Dara

Reference Slides

0.5

0.0

Correlation Between IAQ Parameters

No significant relationships between IAQ parameters

Factor analysis indicates that all five parameters should be used for analysis

 $r^2 = 0.73$

 $r^2 = 0.21$

Sleep Quality and non-IAQ Parameters

No significant relationships between sleep metrics and:

ActivityMood

Only **TST** from Fitbit and EMAs are correlated

Fitbit-Measured TST (hours)

Subjective

