Advancing Personal Air Pollution Exposure for Pregnancy Studies Using Air Sensors

Yisi Liu, PhD

Air Sensor International Conference

May 12th, 2022

Keck School of Medicine of USC

Department of Population and Public Health Sciences

Pental Healt

Background

Research Questions

- How different is personal vs. ambient PM_{2.5} exposure for pregnant women?
- How does built environment impact personal PM_{2.5} exposure ?
- Does built environment modify the relationship between personal and ambient PM_{2.5} exposure?

P2 Real-time Study

RTI microPEM

PM_{2.5} exposures

Personal PM_{2.5} Exposure

- Real-time nephelometry: minute-level mass concentrations
- Integrated filter collection: gold-standard measurement
- Post-correction: mixed effect models

Outdoor PM_{2.5} Exposure

- Home residential
- Inverse distance weighted interpolation

Contexts and Microenvironments

Built Environment Characteristics

Time-weighted locations

GIS Layers

Li Yi, PhD

- Aerial and street greenness
- Park and public transit access
- Street connectivity and walkability (Based on EPA EnviroAtlas)

~ 1million

Minute-level data

Personal PM_{2.5} Exposures

Personal vs. Ambient PM_{2.5} Concentrations

The mean and standard deviation of $PM_{2.5}$ exposure

Visit	Personal PM _{2.5} (μ g/m ³)	Ambient PM _{2.5} (μ g/m ³)
1 st trimester	16.1 (21.1)	11.0 (4.4)
3 rd trimester	15.0 (8.7)	13.2 (6.2)
4-6 months postpartum	26.7 (64.3)	10.1 (4.7)

Exposure Misclassification—Daily Averages

Exposure Misclassification—Daily Averages

Time-Activity & Mobility Patterns

Personal PM_{2.5} by Contexts

Personal PM_{2.5} & Built Environment in Activity-Space

Linear mixed effect model

Distance to the nearest park

Exposure Differences & Built Environment in Activity-Space

(1|ID)

+

Linear mixed effect model Stratified by built environment characteristics

Daily Personal $PM_{2.5}$ exposure \sim Ambient $PM_{2.5}$ exposure

visit, weekend, wildfire days, temperature

+ |

Primary Combustion Peaks

Time

Primary Combustion Peaks

490 peaks in total

0-33 peaks in each

Conclusion and Next Steps

- Personal PM_{2.5} exposures levels are generally higher and more variable than the ambient PM_{2.5} concentrations estimated at home.
- Built environment characteristics in activity-space impact the total personal PM_{2.5} exposures.
- Built environment characteristics in activity-space may modify the relationship between personal and ambient PM_{2.5} exposures.
- Look into sub-daily variations of total personal PM_{2.5} exposures.
- Analyze a specific source of personal air pollution exposure (i.e., primary combustion peaks) from real-time personal exposure data.