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Background and Motivation

* Health-promoting cities and air quality.
* Health effects; policy; air quality monitoring.
* Valuable regulatory monitors.

* Growing global interest in public data
collection.

short-term

effects :
Mg | United States exacerbation . ® |
v Em Environmental Protection of asthma .
I\..’| Agency cough, wheezing - o+

and shortness

Crowd-sourced efforts in exposure assessment



Low-Cost Sensing

Low-cost air quality sensing

e Dense fixed sensor network.
 Community engagement.
 “Open” data.

Data quality

* Relative humidity, temperature.

e Careful lab and in-field
calibrations.

 Well correlation with reference
measurements.

 Emerging calibration efforts.
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How Low-cost Sensing Help?
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Low-cost sensors

Geographic variables

Traditional air
quality models

Crowd-sourced data

Little research assessed the
utility of such growing network
from multiple cities in land use
regression (LUR).

Possibility to improve the LUR
model to capture spatial
variability?



Existing National LUR Model

Category . __ ___ __ ___ Measure Note®
CAC E S LU R I ~ Distance to the nearest road
Traffic | (0.05-15 km) Any available road
- 1+1 | Population Sum (0.5-3 km) Population in block groups
PLS-UK partitions annual average | Bl T upe

| Land use/land cover (Urban) = Percent (0.05-15 km)
Land use/land cover (Rural) | Percent (0.05-15 km)

concentrations into

| Position I Coordinates
. I Source Distance to the nearest source
° ( 1) a variance com po ne nt th at | Sum of cite-specific facility

Emission I emissions (3-30 km)

accounts for spatial and non-spatial | Ve Quaniles (0.5-10 ki)
mperviousness Percent (0.05-5 km)

: H Counts of points above/below a
Va rl a bl I Ity- I Elevation I threshold (1-5 km)

| satellite estimate g Grid-level estimates

Agriculture, forest, water, etc.
Longitude, latitude
Coastline, railroad, airport, etc.

PMazs
Normalized Difference Vegetation Index
Impervious surface value

Elevation value
PMo> s

Y ( 2 ) a m ea n CO m p O n e nt b a S e d O n a "Detatted information can pe found from the CACES LUR modeling study (Kim et al., 2020).

11 categories of geographic variables
Small nl.'lmber Of reduced . 339 independent variables
dimension variables from partial 757 regulatory PM, . monitoring sites

least squares of a large number of

independent variables (Kimetal.,  cACES LUR (random 10-fold CV: R? = 0.83;

2020). standardized RMSE = 0.13)

CACES: Center for Air, Climate, and Energy Solutions
PLS-UK: Partial Least Squares-Universal Kriging



PurpleAir (PPA) Data Pr

PPA data assembly

Six cities: = 7 EPA and PPA sensors.

eparation

PurpleAir Data Assembly

N

Step 2: Quality assurance

Step 1: Retrieve raw data and quality control (QA/QC)

> 18 hours/day, 244
days/year

PurpleAir and Thingspeak
API using R and Python

Six urban areas in the US: 2
7 EPA and PPA sensors

< 45 consecutive days
without measurements

_—_—_—_—__‘

{
|
|
|
|
|
|
|
|
|
|

Channel A/B mismatch;
sensor malfunction

Hourly PM, < (2015-2018)

~

Step 3: Correct data

Correction equations for
humidity/temperature
artifacts based on Malings
et al., 2019

Hygroscopic Growth (HG)

vs. Empirical Correction

(EC) to calibrate the PPA

measurements; 149 valid
sites




PurpleAir (PPA) Data Preparation

PPA data assembly
* Six cities: > 7 EPA and PPA sensors. PurpleAir Data Assembly

* QA/QC:
- Sa m e C r|te ri a a S t h e CAC ES LU R Step 1: Retrieve raw data aizegui:ﬁ;sgzrjs(ﬁ?gi) \I Step 3: Correct data

- channel mismatch (removing
hours when the absolute difference (i 0
was larger than 3 pug/m?3 or 20% of G
the maximum channel readings,
whichever is greater (Malings et al., [ i s
20 19) . 7 EPA and PPA sensors

> 18 hours/day, 244

Correction equations for
days/year

humidity/temperature
artifacts based on Malings
et al., 2019

without measurements

Hygroscopic Growth (HG)

vs. Empirical Correction

(EC) to calibrate the PPA

measurements; 149 valid
sites

|
|
|
|
<45 consecutive days |
|
|
|

Channel A/B mismatch;
sensor malfunction

Hourly PM, < (2015-2018)




PurpleAir (PPA) Data Preparation

PPA data assembly
* Six cities: > 7 EPA and PPA sensors. PurpleAir Data Assembly

* QA/QC:

7 EPA and PPA sensors without measurements

2019).
 Data correction:

- humidity and temperature
artifacts;

Hygroscopic Growth (HG)
vs. Empirical Correction

(EC) to calibrate the PPA
measurements; 149 valid

Channel A/B mismatch;
sensor malfunction

Hourly PM, < (2015-2018)

- same Cr|te ria as th e CAC ES LU R Step 1: Retrieve raw data aif&?ﬁ:?g:@iiﬁ?&i) Step 3: Correct data \I

- channel mismatch (removing : |
hours when the absolute difference [ o0 >18hours/day, 244 N Correction equationsfor M
was Ia rger tha N 3 ug/mB or 20% Of API using R and Python EWAYEETS I arﬁ‘;:;‘:f}‘;’::;“g:ﬁg‘ﬁr:gs :
the maximum channel readings, I etal, 2013 |
WhiChever |S greater (Malings Et al.’ Six urban areas in the US: 2 < 45 consecutive days I |
| |

I |

I |

/

- colocation calibrations.



LUR Model Development

Dependent variables (annual averages)
* EPA data (national and 6 cities).

* PPA data (6 cities).

* Hybrid (EPA + PPA data).
Independent variables

e 11 categories (e.g., traffic,
population, land use).

Modeling approach
PLS-UK.

~CACES LUR
301 /A Data
/ \ EPA £ CACES LUR
J \ S A
I | PPA
I |
201 I |
P I |
S | H |
; I |
& QI | : | vé | 5 | iH
10 %l‘,‘l : —? l:—ﬂq EE
I I x EH% . |
v | 1
| I
01 \ |
DC \ LA I NewYork Phoenix Pittsburgh Riverside
# of monitors EPA: 7 \ 12 1 19 7/ 12 11
PPA: 8 \ 103/ 7 7 8 16
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Comparison (Pop-weighted)

Population-weighted PM2.5 concentrations
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LUR Model Comparison (Transect Plots)

Transect plot of the five
LUR predictions.

Advantages

Models with the PPA data
were more spatially
variable than models
without.

e Models with the PPA data

alone is not
recommended.

PM, 5 prediction(ug/m®)
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Variable Importance

A | CACES LUR: National B CACESLUR: 6-city C PPA LUR
Satellite estimates Greenness (5,000m) Distance to road intersections
Elevation Greenness (1,500m) Commercial (10,000m)
Distance to railroads Greenness (3,000m) Industrial (15,000m)
Imperviousness Distance to railyards Residential (15,000m)
Distance to road intersections Industrial (15,000m) Built-up (1,000m)
Greenness (5,000m) Distance to road intersections Built-up (750m)
Greenness (400m) Distance to railroads Greenness (10,000m)
Residential (1,500m) Built-up (5,000m) Distance to airport
Industrial (1,500m) Residential (500m) Residential (10,000m)
Distance to commercial area Major emission (15,000m) Greenness (15,000m)
0 0.5 1 1.5 2 0 0.5 1 L5 2 0 0.5 1
D Hybrid LUR: National E Hybrid LUR: 6-city B Toaffic
Elevation Distance to road intersections P Satellite
Commercial (15,000m) Truck routes (15,000m)
Built-up (5,000m) Water (10,000m) BN Imperviousness
Industrial (15,000m) Residential (400m) o
Distance to road intersections Greenness (15,000m) I Emission
Satellite estimates Truck routes (10,000m)
Imperviousness Truck routes (5,000m) I Land use/land cover (urban)
Hileup (5,000m) Roud Teag i (5,00 () B Land use/land cover (rural)
Transport utilities (15,000m) Water (15,000m)
Transport utilities (10,000m) Transport utilities (10,000m) Elevation
0 0.5 1 1.5 2 0 0.5 1 1.5 2

* Traffic and land use variables were important variables for
models with the PPA data; strength of capturing “hotspots”.
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Summary and Implications

Hybrid models may capture small-scale variations that may be missed by the
regulatory-based models

Valuable dataset for LUR if data is carefully cleaned and calibrated.

With available national correction approaches (Barkjohn et al., 2021), additional
cities would help assess tradeoffs in national vs. local corrections.

Calibrations by co-locating PPA sensors with regulatory-grade monitors in
additional cities may help reduce bias.

Further empirical investigation is warranted in hybrid models with additional
sensors from larger areas and multiple cities.

Neighborhood planning and design; clean streets; guidance on outdoor activities;
interventions.
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Hygroscopic Growth (HG) Correction

HG correction

, y _ Water activity: . We applied the best available

* Adjusted to be “Beta Attenuation | _ 45, M, \ ™ | | cityspeciic composition, thus
. . aw(T,RH) = RH exp p ,RTD ' hygroscopicity for each city: !
M0n|tors (BAM) eqU|Va|ent” | i 2 | ' - ForPittsburgh, Riverside, and

’ I l I ' LA (where we had co-located

. . . - ~ T regulatory-grade monitors
* Over prediction at high RH and || Hygroscapicigrowth factor: || infsuroundthatcity), we |
. . . I fRH(T RH) R aw(Ts RH) ' i calculated hygroscopicity and i

under prediction of particles < 300 | “* 1~ a,(T, RH) BB Bsesoniacs

\ | ocated sensors

nm. P ::::::l::__—_—_—_-. . _Forothercities,\a.vegsedthe
|( Additional linear correction: A\| i interagency monitoring of :
.« e ° ° [PM as e orted] : protected visual environments i
* Cities with/without co-located PPA I [corrected PM, 5] = el( s 2 >+90 |\ (mPROVE) samplesforthe |
‘ H(T, RH) /' i monitors closest to each city. |
SeNSOIrS. T i e o o o o o o o oo T

* Either the Pittsburgh (New York, respesivel.
DC) or the Riverside regression (LA,
Phoenix) based on similarities in
climate and PM, . composition.

Hygroscopic Growth (HG) Correction Method



CACES LUR Estimates vs. PPA Measurements

Differences

e Spatial mismatch.

e Uncaptured “hotspots”:
industrial facilities and
highway.

N

A

0 5 10 20 30

PPA measurements CACES LUR

(ng/m*) predictions (ug/m?)

® <5 B -

® 7-8 - Major road
@® 9-10 - ERRD)

@ 1-12 -2 Industrial
@ 13-14 b 13-14 facility
O 15-16 15- 16 ;
QO 17-18 1718

Q@ 19-20

@ -2

@ 23.24

@® 25-26

@® 27-28
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External Evaluation of CACES LUR Estimates

Uncaptured

* Miss “hotspots”.

CACES LUR predictions(ug/m3)
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CACES LUR: External Evaluation

| Truncated data: o : s

- |
Full data: e |
y=023x+575| P

I
R°:041 | 7]
MAE : 5.5(ug/m>)! 4
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|
)
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LUR Model Comparison (Normalized Pop-weighted)

Population-weighted PM2.5 (Normalized)

A CACES LUR: National B  CACES LUR: 6-city C PPALUR \D Hybrid LUR: National E] Hybrid LUR: 6-city

Hybrid models not only benefit from capturing “hotspots” but are also consistent
with the regional spatial trends in the CACES LUR models.

Normalized Population-weighted PM, . concentration maps
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Hybrid LUR: Mitigating Uncertainty

* LUR using only the PPA data may be _
reasonable; however, consistently higher =
predictions. v

* Hybrid models suggest the value of O,
combinations. g

Future LUR models: investigating factors
behind model improvement.

Pop-weighted Hybrid LUR predictions(uglma)
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Low-Cost Sensing in Air Quality Models

* Representative samples. .
* Fast-growing network.

e Rural areas and low- and
middle-income countries
(sparse regulatory
monitors).
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Neighborhood planning
and design; clean streets;
guidance on outdoor

activities; interventions
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