57 Lancaster 42 55 53 55 emdale 61 57 66 Victorville 59

Using Crowd-Sourced Low-Cost Sensors in a Land

Use Regression of PM_{2.5} in 6 US Cities

Tianjun Lu¹, Matthew J Bechle², Albert A Presto³, Steve Hankey⁴ ¹California State University, Dominguez Hills; ²University of Washington ³Carnegie Mellon University; ⁴Virginia Tech ASIC 2022

May 11, 2022

Background and Motivation

- Health-promoting cities and air quality.
- Health effects; policy; air quality **monitoring**.
- Valuable regulatory monitors.
- Growing global interest in **public data collection**.

National Ambient Air Quality Standards

Crowd-sourced efforts in exposure assessment

Low-Cost Sensing

Low-cost air quality sensing

- Dense fixed sensor network.
- Community engagement.
- "Open" data.

PurpleAir Image: Second seco

Low-cost sensors

PurpleAir network

EPA air quality monitors vs. PurpleAir sensors

Data quality

- Relative humidity, temperature.
- Careful lab and in-field calibrations.
- Well correlation with reference measurements.
- Emerging calibration efforts.

How Low-cost Sensing Help?

- Little research assessed the
 utility of such growing network
 from multiple cities in land use
 regression (LUR).
- Possibility to improve the LUR model to capture spatial variability?

Existing National LUR Model

CACES LUR

PLS-UK partitions annual average concentrations into

- (1) a variance component that accounts for spatial and non-spatial variability.
- (2) a mean component based on a small number of reduced dimension variables from partial least squares of a large number of independent variables (Kim et al., 2020).

Category	Measure	Note ^a
	Distance to the nearest road	
Traffic	(0.05-15 km)	Any available road
Population	Sum (0.5-3 km)	Population in block groups
Land use/land cover (Urban)	Percent (0.05-15 km)	Urban or built-up land, etc.
Land use/land cover (Rural)	Percent (0.05-15 km)	Agriculture, forest, water, etc.
Position	Coordinates	Longitude, latitude
Source	Distance to the nearest source	Coastline, railroad, airport, etc.
•	Sum of cite-specific facility	
Emission	emissions (3-30 km)	PM _{2.5}
Vegetation	Quantiles (0.5-10 km)	Normalized Difference Vegetation Index
Imperviousness	Percent (0.05-5 km)	Impervious surface value
	Counts of points above/below a	
Elevation	threshold (1-5 km)	Elevation value
Satellite estimate	Grid-level estimates	PM _{2.5}

^aDetailed information can be found from the CACES LUR modeling study (Kim et al., 2020).

11 categories of geographic variables

339 independent variables

757 regulatory $\mathrm{PM}_{\mathrm{2.5}}$ monitoring sites

CACES LUR (random 10-fold CV: R² = 0.83; standardized RMSE = 0.13)

PurpleAir (PPA) Data Preparation

PPA data assembly

• Six cities: ≥ 7 EPA and PPA sensors.

PurpleAir (PPA) Data Preparation

PPA data assembly

- Six cities: ≥ 7 EPA and PPA sensors.
- QA/QC:
- same criteria as the CACES LUR
- channel mismatch (removing hours when the absolute difference was larger than $3 \mu g/m^3$ or 20% of the maximum channel readings, whichever is greater (Malings et al., 2019).

PurpleAir (PPA) Data Preparation

PPA data assembly

- Six cities: ≥ 7 EPA and PPA sensors.
- QA/QC:
- same criteria as the CACES LUR
- channel mismatch (removing hours when the absolute difference was larger than $3 \mu g/m^3$ or 20% of the maximum channel readings, whichever is greater (Malings et al., 2019).
- Data correction:
- humidity and temperature artifacts;
 - colocation calibrations.

LUR Model Development

Dependent variables (annual averages)

- EPA data (national and 6 cities).
- PPA data (6 cities).
- Hybrid (EPA + PPA data).

Independent variables

• 11 categories (e.g., traffic, population, land use).

Modeling approach

• PLS-UK.

LUR Model Comparison (Pop-weighted)

LUR Model Comparison (Transect Plots)

• Transect plot of the five LUR predictions.

Advantages

- Models with the PPA data were more spatially variable than models without.
- Models with the PPA data alone is not recommended.

Variable Importance

• Traffic and land use variables were important variables for models with the PPA data; strength of capturing "hotspots".

Summary and Implications

- Hybrid models may capture small-scale variations that may be missed by the regulatory-based models
- Valuable dataset for LUR if data is **carefully** cleaned and calibrated.
- With available national correction approaches (Barkjohn et al., 2021), additional cities would help assess tradeoffs in **national vs. local corrections**.
- Calibrations by co-locating PPA sensors with regulatory-grade monitors in additional cities may help reduce bias.
- Further empirical investigation is warranted in hybrid models with additional sensors from larger areas and multiple cities.
- Neighborhood planning and design; clean streets; guidance on outdoor activities; interventions.

Acknowledgement and Contact

Air Quality, Atmosphere & Health https://doi.org/10.1007/s11869-022-01162-7

Using crowd-sourced low-cost sensors in a land use regression of $\rm PM_{2.5}$ in 6 US cities

Tianjun Lu¹ · Matthew J. Bechle² · Yanyu Wan³ · Albert A. Presto³ · Steve Hankey⁴

Received: 8 September 2021 / Accepted: 19 January 2022 © The Author(s), under exclusive licence to Springer Nature B.V. 2022

- ² Department of Civil & Environmental Engineering, University of Washington, 201 More Hall, Seattle, WA 98195, USA
- ³ Department of Mechanical Engineering, Carnegie Mellon University, 2115 Doherty Hall, Pittsburgh, PA 15213, USA
- ⁴ School of Public and International Affairs, Virginia Tech, 140 Otey Street, Blacksburg, VA 24061, USA

Tianjun (Luke) Lu

tilu@csudh.edu

https://tianjunlu.weebly.com/

SEPA United States Environmental Protection Agency

Supplemental Material

Hygroscopic Growth (HG) Correction

HG correction

- Adjusted to be "Beta Attenuation Monitors (BAM) equivalent".
- Over prediction at high RH and under prediction of particles < 300 nm.
- Cities with/without co-located PPA sensors.
- Either the Pittsburgh (New York, DC) or the Riverside regression (LA, Phoenix) based on similarities in climate and PM_{2.5} composition.

Where σ_{w} , M_{w} , ρ_{w} , T, R, D_{P} , RH, <u>Kbulk</u> denote the surface tension, molecular weight, density of water, absolute temperature, ideal gas constant, particle diameter, ambient relative humidity, and <u>hygroscopicity</u> of bulk aerosol, respectively.

Hygroscopic Growth (HG) Correction Method

CACES LUR Estimates vs. PPA Measurements

Differences

- Spatial mismatch.
- Uncaptured "hotspots": industrial facilities and highway.

External Evaluation of CACES LUR Estimates

Uncaptured

• Miss "hotspots".

10

PPA PM_{2.5} measurements(μ g/m³)

20

30

LUR Model Comparison (Normalized Pop-weighted)

Hybrid models not only benefit from capturing "hotspots" but are also consistent with the regional spatial trends in the CACES LUR models.

Normalized Population-weighted PM_{2.5} concentration maps

Hybrid LUR: Mitigating Uncertainty

- LUR using only the PPA data may be reasonable; however, consistently higher predictions.
- Hybrid models suggest the value of combinations.
- Future LUR models: investigating factors behind model improvement.

Low-Cost Sensing in Air Quality Models

- Representative samples. •
- Fast-growing network.
- Rural areas and low- and middle-income countries (sparse regulatory monitors).
- Neighborhood planning and design; clean streets; guidance on outdoor activities; interventions

