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Introduction

• Public and private sectors need high 
spatiotemporal air quality 
information in near-real time

• Demand is driven by:
‒ Risks from extreme air quality events, 

such as wildfires, when pollution from 
smoke is great and spatial and 
temporal variability are high

‒ Information that serves communities at 
local scales

Example application:
U.S. Forest Service (USFS) / 

U.S. Environmental Protection 
Agency (EPA) fire and smoke 

map
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Introduction
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• To meet the need for high spatiotemporal air quality information in 
near-real time, we aimed to develop estimates of current air quality 
for the U.S. that provide:
‒ Complete national coverage (no spatial gaps)

‒ High spatial resolution (1-5 km) 

‒ Hourly results that are available in near-real time

• Different methods for complete coverage include:
‒ Use of Chemical Transport Model (CTM) forecasts

‒ Use of satellite-derived surfaces

‒ Fusion methods (spatial interpolation, machine learning, LUR, and others)



Introduction

• Fusion methods for predicting 
air quality at a 
high-spatiotemporal 
resolution range from simple 
to complex and have been 
shown to vary in 
accuracy/precision

• Existing methods can be 
computationally intensive, and 
lack transparency for users 
and decision makers 

Method/Product Advantages Limitations

Residual kriging 
interpolation

Relatively simple 
covariance weighting 

approach

Computationally 
intensive for large 

domains

Inverse distance 
weighted (IDW) 

interpolation

Simple, computationally 
efficient

Simplified pollutant 
decay

Geographically 
weighted regression

Spatial calibration 
technique

Availability of local 
covariates

Land use regression
Standard exposure 
covariate technique

Computationally 
intensive

XGBoost regression
Sophisticated ML 
regression with 

important regressor

Computationally 
intensive

Convolutional neural 
network 

Deep learning technique
Computationally 

intensive

Ensemble machine 
learning

State of art exposure 
models

Computationally
intensive
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• We adapted the Schulte et al.* 
approach for the Los Angeles basin and 
scaled it to the entire U.S. domain at 1 x 
1 km spatial resolution

• We selected our approach based on 
four top priorities:
‒ Demonstrated performance

‒ Simplicity/transparency

‒ Computational feasibility

‒ Opportunities for future improvements

*Schulte, N., Li, X., Ghosh, J.K., Fine, P.M. and Epstein, S.A., 2020. Responsive high-resolution air quality index mapping 
using model, regulatory monitor, and sensor data in real-time. Environmental Research Letters, 15(10), p.1040a7.



Methodology

Kriging of Residuals

Input data sets

Reference Grade 
Observations

Low-Cost Sensor 
Observations

Chemical Transport Model 
Surfaces

Grid 
Observations 
(Uncertainty)

Downscale

Difference
Kriging of 
Residuals

Gridded 
Hourly Air 

Quality
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Methodology Input Datasets

Merge Subdomains

Kriging Result

Subdomain 
Partitioning with 

Overlap

Kriging of Residuals

Kriging 
Uncertainty-Weight
ed Average

Overlap Region for 
Domain Boundaries

Kriging 
Uncertainty-Weight
ed Average

• Utilized subdomains (N=30) in order to 
generate national scale results at 1 km 
spatial resolution within 15 minutes

• Selection of subdomains considered:
‒ Density of observations

‒ Size of the domain

‒ Spatial autocorrelation within the subdomain

‒ Semivariogram fitting performance
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Results

AirNow PurpleAir NAQFC

Kriging of 
Residuals

March 27, 2022, 16:00 UTC

Category   Good  Moderate
  Unhealthy for 

  Sensitive Groups
  Unhealthy

  Very 
  Unhealthy

 Hazardous
  Beyond   
  Index

Color        

24-hour PM
2.5

 
concentration 
(µg/m3)

0-12 12.1–35.
4 35.5-55.4 55.5-150.4 150.5– 

250.4
250.5–5

00.4 500.5+

AQI 0-50 51-100 101-150 151-200 201-300 301-500 501+
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Model Evaluation

• Stratified 10-fold cross validation at AirNow 
monitors

• Accuracy—Root Mean Square Error (RMSE) 
and Normalized Root Mean Square Error 
(NRMSE) — and precision (R-squared, 
F1-score classification) are computed

• Evaluating January 2022 and July 2021

• Understand model performance across 
regions and pollution episodes

• Compared to alternative methods

Potential Considerations

‒ Monitor spatial density

‒ Regionally variable spatial 
covariance 

‒ Sensor measurement 
uncertainties relative to 
AirNow PM

2.5
 FEMs

‒ Urban/rural topographies

‒ Regional transport patterns

Low 
Density

High 
Density
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Model Evaluation

• During January 2022, the 
hourly, national scale result 
using the kriging of 
residuals methods at 1 km 
spatial resolution has an 
RMSE of 5.8 µg/m3

• Comparable with Schulte 
et. al. results for Southern 
California at 5 km 
resolution (5.94 µg/m3)

• AQI category is correctly 
predicted 85% of the time
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Model Evaluation

• Lower RMSE in urban areas with 
greater density of monitors

• RMSE and other regression 
metrics are influenced by CTM 
model biases

• RMSE can also vary at small 
spatial scales in areas of more 
dense monitoring:
‒ Local influences from low-cost 

sensors

‒ Different reference grade 
instrumentation

0.7-4.
04.1-7.0

7.1-11.0

>= 11.1  

January 2022
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Model Evaluation

Kriging of residuals method 
better predicts hourly 
reference-grade observations 
than traditional methods that 
use inverse distance weighting 
(IDW) of observations

Kriging of residuals

CTM IDW of Observations

Method LSQ Regression 
Equation R2 Sample

size

Kriging of Residuals Y=2.96 + 0.605X 0.48 601451

IDW of Observations Y=4.32 + 0.54X 0.36 601451

Chemical Transport 
Mod Y=4.82 + 0.409X 0.16 601451
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Model Evaluation

• Kriging of residuals results in a 
lower RMSE (5.8 µg/m3) than 
IDW of observations (7.2 µg/m3) 
or CTM (9.1 µg/m3)

• RMSE peaks during morning and 
evening
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Summary
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• Developed a national-scale hourly product at 1-km spatial resolution that 
can be used operationally in near-real time

• Accuracy for PM
2.5

 across diverse U.S. geographical regions comparable to 
the 6 µg/m3 RMSE reported for Los Angeles Basin (Schulte et al., 2020)

• Kriging of residuals method better predicts AirNow PM
2.5

 observations 
than IDW of AirNow or NAQFC alone

• Ongoing improvements are being made, with additional covariates and 
data sources

• Please also visit our poster on our hourly forecasting work


