

Is PM sensor testing really testing the sensors?

Experiences from 400 days of field tests in the Life VAQUUMS project

Jordy Vercauteren

VI AAMSE IEUMAATSCHAPPIJ

		N
Plantower PMS7003	Winsen ZH03B	Shinyei PPD 60PV
(Shinyei PPD42NS)	(Alphasense OPC-N2)	

- Urban background Antwerp (Belgium)
- 401 days (Feb 2019-Mar 2020)
- <u>6 sensor types x 5 units/type</u>
- <u>2 reference</u> systems
- No external algorithms (e.g. RH)

EU gravimetric reference (PM_{2.5} only)

EU equivalent method (Palas Fidas 200)

What did we look at?

- 5min, 1h and 24h data. Focus on 1h data
- ▶ PM_{2.5}, PM₁₀ and also PMcoarse !
- Comparison with ref. monitor (R², scatterplots, mean bias)
- Between sensor uncertainty (sd, rsd)
- Uncertainty at the limit value vs 24h gravimetric ref (official EU method)
- 'humidity factor'
- Need for manual validation/data coverage
 VLAAMSE
 MILIEUMAATSCHAPPIJ

PM_{2.5} correlations (sensor vs Fidas)

Dylos

111

PPD60pv

EU demonstration of equivalence (vs 24h grav. ref.)

"24h average of all valid data"

Unc. = random term & bias at limit value (minus ref. uncertainty)

"humidity factor":

PM_{2.5} sensor/ref. above 90% vs around 50% (ratio of 2 ratios)

Range for different sensor types: 1.4 <-> 2.4

"Testing the sensor ... and the aerosol+RH at your site"

Humidity effect at 8 sites (SDS-011 only)

RH(%) 90 80 70 60 Ŧ R802 R805 R817 R834 90 70 60 50 12 18 23 12 18 23 0 0 6 hour RH(%)

Underestimation during the day (partially) compensated by **overestimation** at night

> results better for 24h data
> location effect !
(influence of RH larger at sites with more vegetation)

VLAAMSE MILIEUMAATSCHAPPIJ

Figure 132: Monitoring site R834 (Boom)

 $PM_{10} = PM_{2.5} + PM_{coarse}$

111

Bad results for all sensors. Only SDS011 and Dylos appear to pick up some particles >2.5 μm

Is it a true PM₁₀ sensor? >> look at PM_{coarse}

sensor PM_{coarse} vs sensor PM_{2.5}

Be aware : Local PM can often be PM_{coarse}

(de)construction works

resuspension, break and tire ware Industrial handling, transshipment

But (local) combustion = PM_{2.5}

Manual validation matters

Short spikes

Max values

Light/heat interferences (?)

'all over the place' data

Electronic interferences (?)

PM-sensors

Tested PM-sensors

Honeywell HPMA 115S0

> Plantower PMS7003

Shinyei PPD60PV

Winsen ZH03B

Nova Fitness

SDS011

Shinyei PPD42NS*

Alphasense OPC-

N2*

R² of hourly sensor data vs Fidas 200

PM2.5 PM10

Mean bias of hourly PM2 sensor data vs Fidas 200

Increase in PM_{2.5} sensor/Fidas ratio from 50% to +90% relative humidity

Between-sensor uncertainty for hourly PM2.5 data (ub)

Expanded uncertainty of 24h PM2 s sensor data vs gravimetric reference (after calibration)

*excluded from test due to technical problems

FIELD TEST FACT SHEET

Setup and definitions see: Vaguums test protocol - Full test report see: Vaguums PM fieldtest report

Expanded uncertainty of 24h PM25 sensor data vs gravimetric reference (no calibration)

Sensor quality index

out of the box uncertainty at LV (%) uncertainty at LV after calibration (%) between-sensor uncertainty (%) humidity factor data availability (#valid hours)

5	4	3	2	1
excellent	good	ok	poor	bad
<15	<25	<50	<100	>100
<15	<25	<50	<100	>100
<10	<15	<20	<30	>30
<1.25	<1.5	<2	<3	>3
>35000	>30000	>25000	>20000	<20000

Are we really testing the sensors?

- Or are we testing the specific conditions of the test?
- Or are we also testing our validation skills?

- Are we only testing the average performance?
- Shouldn't we focus more on the extremes (best/worst)?
- Shouldn't we test specific aerosol (e.g. PMcoarse)
 (regional/secondary PM is already covered by the AQ-networks)

https://**vaquums.eu**/sensor-db/tests

j.vercauteren@vmm.be

https://github.com/EvelyneElst/LIFE_VAQUUMS (full dataset)