

Air Sensors International Conference 2022 Session 4C: Indoor Sensing for Air Quality Control and Ventilation Applications

Development of ASTM Standard Test Methods for PM_{2.5} and CO₂ Sensors Used for Indoor Air Quality Measurements

-

Wilton Mui, Ph.D. Air Quality Specialist, South Coast AQMD

> May 12, 2022 Pasadena, CA

Air Quality Sensor Performance Evaluation Center

Q_SPEC

Indoor Air Quality

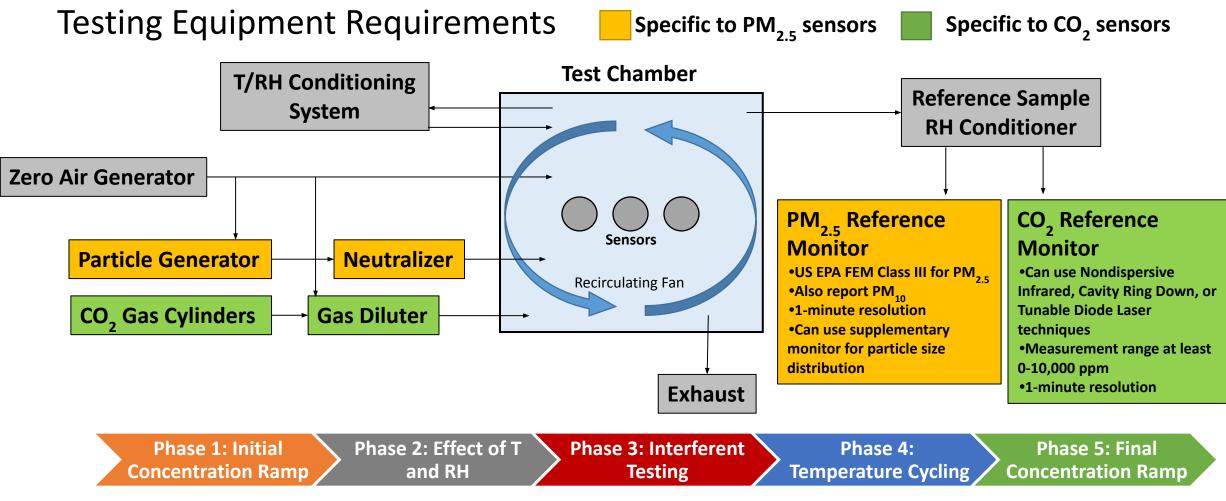
- We spend ~90% of our time indoors
- Pollutants of recent pandemic-related concern for indoor air quality (droplets, aerosols, building crowdedness)
- PM_{2.5}

South Coast

- No indoor air quality standards for PM₂₅
- Occupational standards only exist for PM
- Indoor sources: improperly vented indoor combustion sources, dust resuspension, construction/fabrication activities, particle-producing activities near building air intake
- CO,
 - ASHRAE recommends limits of 800 ppm for offices and 1,000 ppm in schools
 - Occupational standard of 5,000 ppm for workday average and 30,000 ppm for short-term exposure
 - Indoor sources: people breathing, improperly vented indoor combustion sources, combustion activities near building air intake

PM_{2.5} and **CO**₂ Sensors

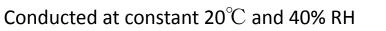
- PM₂₅ sensors use light-scattering technique
- CO₂ sensors mostly use nondispersive infrared absorption technique
- Well-suited for consumer, building, and vehicle applications
 - Low cost (~\$100-1,000 USD range)
 - Low power
 - Low noise
 - Compact form factory
 - High time resolution
 - Range of aesthetic choices and interfaces
 - Some are smart-home / demand-control ventilation integrable
- Can provide feedback for indoor space ventilation or filtration actions (demand-controlled ventilation)
- Data quality can be a challenge
- Appropriate and widespread adoption of technologies into consumer and HVAC applications requires independent verification of sensor performance

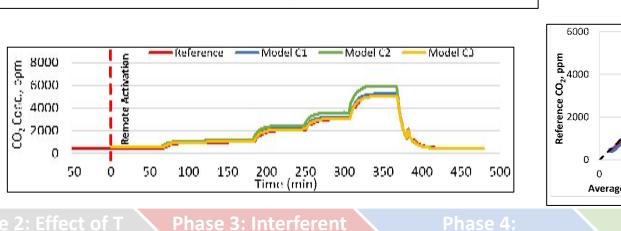

AQ-SPEC Air Quality Sensor Performance Evaluation Center

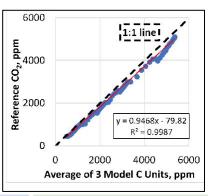
Generalized Standard Test Method Process

South Coast

	Phase 1: Initial Concentration Ramp	Phase 2: Effect of T and RH	Phase 3: Interferent Testing	Phase 4: Temperature Cycling	Phase 5: Final Concentration Ramp
Purpose	Assess accuracy and correlation at constant climate with fresh sensors	Assess impact of indoor climates on accuracy	Assess impact of potential interfering pollutants on accuracy	Simulate accelerated non-specific aging of sensor	Assess <i>changes</i> in accuracy and correlation at constant climate with used sensors
For PM _{2.5} Sensors:	 6 concentrations, 0-300 μg/m³ Response to power loss Inorganic and organic particle type tested 	 3 temperatures, 20-50°C 3 RH conditions, 40-80% 2 concentrations, 10-50 μg/m³ 12 combinations required (plus 6 optional combinations) 	 •Use of Arizona Test Dust as interfering coarse PM •4 coarse PM concentration conditions, 10-150 μg/m³ 	 Simulates a year's worth of cyclical environmental stress 143 temperature cycles from 10°C to 50°C, and back 	 Repeat of Phase 1 Minimum of 15 days must have elapsed since Phase 1 Only inorganic particle type
For CO ₂ Sensors:	•5 conc., 450-5000 ppm •Response to power loss	 •3 temperatures, 20-50°C •3 RH conditions, 40-80% •2 conc., 1000-5000 ppm •12 combinations required (plus 6 optional combinations) 	 •Use of moisture as interferent species •5 RH conditions, 20-80% 	 Simulates a year's worth of cyclical environmental stress 143 temperature cycles from 10°C to 50°C, and back 	 Repeat of Phase 1 Minimum of 15 days must have elapsed since Phase 1
	Phase 1: Initial Concentration Ramp	Phase 2: Effect of T and RH	Phase 3: Interferent Testing	Phase 4: Temperature Cycling	Phase 5: Final Concentration Ramp



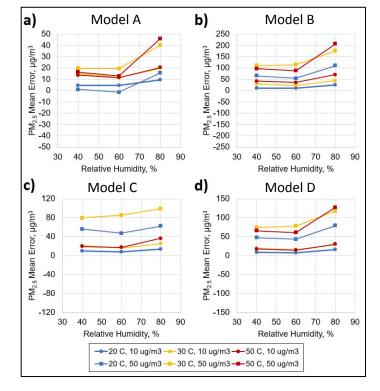

Phase 1 – Initial Concentration Ramp

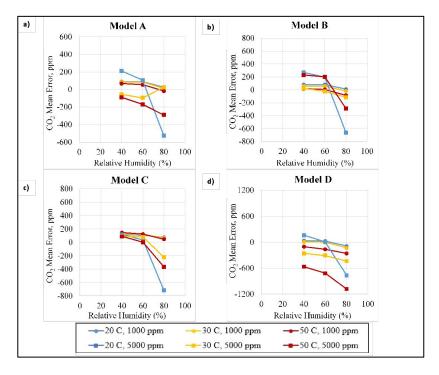

Level	Target PM _{2.5} (μg/m³)	Target CO ₂ (ppm)
LOD	~0	
Very Low	10	450
Low	15	1000
Medium	50	2000
High	150	3000
Very High	300	5000

700 _Еш/бл y = 0.550x - 2.188 $R^2 = 0.999$ 600 Activation 4 400 000 000 100 100 ~ 500 P 400 \$ 300 ote ₹ 200 å 100 0 60 120 180 240 300 360 600 840 900 960 1020 1080 0 420 480 540 660 720 780 100 200 300 400 500 600 Average of 3 Model D units Time, minutes PM_{2.5}, µg/m³

- PM_{2.5} substance: inorganic (NaCl) and organic (polystyrene latex) particles
- CO₂ substance: compressed CO₂ gas from ISO 17034 supplier

Phase 1: Initial Concentration Ramp

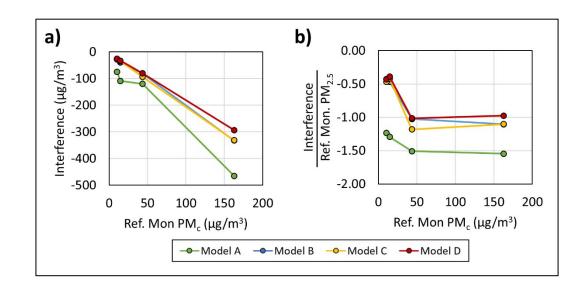



Phase 2 – Effect of T and RH

	Medium RH	High RH	Very High RH
Medium T	20°C	20°C	20°C
	40%	60%	80%
High T	30°C	30°C	30°C
	40%	60%	80%
Optional Cooking	50°C	50°C	50°C
Environment T	40%	60%	80%

Conducted at two constant pollutant concentrations:

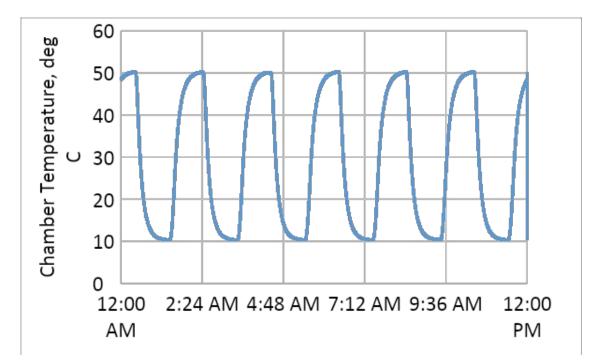
- 10 and 50 μ g/m³ NaCl for PM_{2.5} sensors
- 1000 and 5000 ppm CO₂ for CO₂ sensors



Phase 1: Initial
Concentration RampPhase 2: Effect of T
and RHPhase 3: Interferent
TestingPhase 4:
Temperature CyclingPhase 5: Final
Concentration Ramp

Phase 3 – Interferent Testing

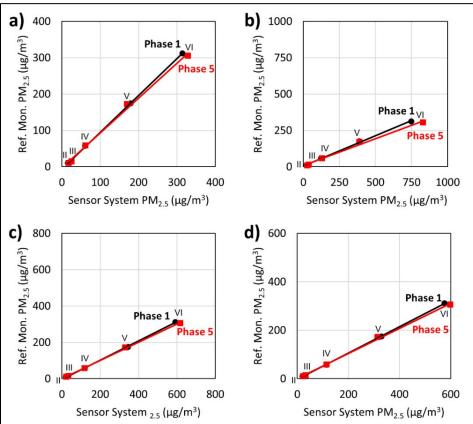
Aspect	PM _{2.5}	CO ₂
Conditions	20 $^\circ\!\mathrm{C}$ and 40% RH	$20^{\circ}\!\mathrm{C}$ and 1000 ppm CO $_2$
Interferent	Coarse PM (between 2.5 and 10 μm)	Water
Interferent Reagent	ISO 12103-1 Grade A4 Coarse Arizona Test Dust	Water
Interferent Concentrations	10, 15, 50, 150 μg/m ³	20, 40, 60, 75, 80% RH



Phase 4 – Temperature Cycling

- For both PM_{2.5} and CO₂ sensors:
 Alternate T between 10°C and 50°C for 143 cycles
- Simulates 1 year's worth of non-specific aging
- No sensor data collected or analyzed from this phase
- Based on Coffin-Manson fatigue model

$$N_{\text{test}} = \frac{N_{\text{field}}}{\left(\frac{\Delta T_{\text{test}}}{\Delta T_{\text{field}}}\right)^c}$$


Phase 4: **Temperature Cycling**

Phase 5 – Final Concentration Ramp

For both PM_{2.5} and CO₂ sensors:

- Repeat Phase 1 to assess change in sensor response after being subjected to past series of tests
- Minimum of 15 days must pass between Phase 1 and this final test
- Looks for differences in sensor performance after subjected to series of exposure to climatic and interferent challenges, as well as accelerated non-specific aging

Phase 1: Initial Concentration Ramp ase 2: Effect of and RH Phase 3: Interfere Testing

Temperature Cycling

Phase 5: Final Concentration Ramp

Conclusions

- Demand-controlled ventilation going to be more popular
 - More awareness and concern of indoor air quality
 - Energy-efficient building and home operations
 - Growing share of residential use of smart devices
 - New era of building crowdedness monitoring and disease transmission prevention
- PM_{2.5} and CO₂ are important markers of indoor air quality, and sensor technology for these two pollutants is relatively mature and reliable compared to those for other pollutants
- These sensors are expected to be integrated into more buildings, HVAC systems, and automobiles
- Need rigorous, comprehensive, and traceable standard test methods to evaluate sensor performance
- ASTM PM_{2.5} and CO₂ standard test methods serve this purpose

Test Standard Statuses

- PM_{2.5}
 - Test standard published in October 2021
 - D8405: "Standard Test Method for Evaluating PM_{2.5} Sensors or Sensor Systems Used in Indoor Air Applications"
 - Participants requested for interlaboratory study
 - AQ-SPEC has proven ability to execute D8405 and can offer testing service under this test standard
 - Home Ventilating Institute (HVI) developing certification under this test standard
- CO_2
 - Laboratory testing and method development activities concluded
 - Test standard undergoing review, comment, and revision activities at ASTM subcommittee level