Development and Evaluation of a Novel Continuous and Concurrent Sampling System for Sub-ppb Level Detection of Volatile Organic Compounds in an Industrialized Area in Los Angeles

Pami Mukherjee^{*}, Tsung-Kum A. Chou", Jay Yang", Mihai Lee obert Wimmer^{*}, Matthew Prather^{*}, Veudy Cen^{*}, Catalina Tsai^{*} H.F. Wu["], Olga Pikelnaya^{*}, Andrea Polidori^{*} *South Coast Air Quality Management District "Tricorntech Corp.

Objectives:

- Overview of Rule 1180 community network
- Detection and Characterization of VOC plume
- Development and demonstration of the Concurrent Sampling System (CSS)

Rule 1180 monitoring at a glance

- ✓ 7 major refineries
- ✓ Community monitoring stations-10 permanent sites
- ✓ Real-time monitoring for all Rule 1180 required compounds
- Dedicated public data portal and \checkmark notification system

Automated Gas Chromatography

Automated Gas Chromatography

- Continuous hourly averaged concentration
 - 40 minutes sampling followed by 20 minutes analysis
- Sub-ppb range detection capability on community level trace VOCs monitoring

UV-DOAS Spectroscopy

UV-DOAS Spectroscopy

- Continuous high frequency time resolution measurement
- Minimal instrument maintenance
- Fast detection of short-lived VOC plumes

Detection and characterization of VOC plumes in the community

Styrene at the Inner Port Community site

Distribution of VOC plumes duration

Elevated Styrene Events

Short-lived VOC plumes detection High Styrene Events

- Majority of the plumes Auto-GC detected ٠ ~66% of the plume, the point along and near the slope line 2/3
- Few plume events, along the slope line 0, ٠ are completely undetected by Auto-GC

Low concentration long-term VOC detection

- 66% of the time hourly Benzene was above Auto-GC detection level but less than UV-DOAS detection level
- 3% of those hourly Benzene values were above Chronic REL.

Concurrent Sampling System Development, Demonstration and Testing

Development of the CSS unit

~ 6 months

Testing at the South Coast AQMD Lab

And Troubleshooting

~ 4 months

Deployed at the Rule 1180 Community Monitoring Site for Co-location and Comparison

55 minutes sampling time (hourly data cycle)

15 minutes sampling time (20-min data cycle)

Concurrent Sampling System – 55-minute sampling

55-minute sampling begun on March 19, 2022.

Benzene

55-minute Sampling Cycle - Benzene

Toluene

55-minute Sampling Cycle - Toluene

South Coast

Concurrent Sampling System – 20-minute sampling

20-minute sampling begun on April 22, 2022.

20-minute Sampling Cycle

Benzene

20-minute Sampling Cycle

Toluene

Summary

- Successful development and demonstration of the Concurrent Sampling System (CSS)
- CSS operates in two sampling modes:
- 55-minute sampling mode:
 - \checkmark >90 % of air is being collected and analyzed
 - ✓ 1 sample point every hour
- 20-minute sampling mode:
 - ✓ 3 sample points per hour
 - ✓ Sub-ppb detection level
- Initial co-location with traditional 40-minute Auto-GC and UV-DOAS showed good agreement
- 20-minute sampling can be also useful for deployment on mobile platform

