Quantifying long-term exposures to fine particulate matter ($PM_{2.5}$) using real-time low-cost sensors in the Tamil Nadu Air Pollution and Health Effects (TAPHE-II) cohort, India

<u>Naveen Puttaswamy</u>¹, Sreekanth Vackacherla², Aditi Upadhyay³, Sudhakar Saidam¹, Saritha Senthil¹, Mangalam Sundaram¹, Rengaraj Ramasamy¹, Sankar Sambandam¹, Santu Ghosh⁴, Jay Dhariwal⁵, Ajay Pillariseti⁶, Kalpana Balakrishnan¹

¹Faculty of Public Health, Sri Ramachandra Institute of Higher Education and Research, Chennai, India

²Center for study of Science, Technology and Policy, Bengaluru, India

³ILK Labs, Bengaluru, India

⁴St. John's Research Institute, Bengaluru, India

⁵Indian Institute of Technology, Delhi, India

⁶Rollins School of Public Health, Emory university, GA, US

Air Sensors International Conference (ASIC), Pasadena, CA May 11, 2022

- Household combustion sources contribute significantly to ambient PM_{2.5} levels in India
- Most health-effect studies rely on 24- or 48-h measurements
- Long-term monitoring of indoor PM may help improve exposure – response analyses
- Low-cost sensors (LCS) provide a platform for long-term indoor PM monitoring in health-effect studies

Objectives and Sampling Method

- 1. Evaluate **sensor performance** in indoor and ambient environments
- 2. Measure indoor PM levels <u>over a 21-day period</u> in rural and urban households

URBAN site: Chennai city Study population: 150 pregnant women

<u>Major sources of indoor PM</u>: transport, dust, industries, open waste burning, brick kilns

RURAL site: Nagapattinam Study population: 150 pregnant women

<u>Major sources of indoor PM</u>: biomass combustion, open waste burning, agriculture activities

	Location	Fuel category	Number of households	Monitoring days, mean (SD)	Data availability (%)
	Rural (N=53)	Biomass	20	21 (6)	99
		Mixed-fuel	12	23 (11)	97
		LPG	21	24 (10)	98
	Urban (N=20)	LPG	20	24 (5)	99

District Map of State of Tamil Nadu

Reference Grade for PM_{2.5} ~ \$ 40,000

Low cost sensors for $PM_{2.5}$ ~ \$ 500 - 800

Indoor PM monitoring: Air quality monitors

SKC Air Sampler

UPAS

LCS-Atmos

LCS-Aerogram

Personal- UPAS

Collocation: Ambient and Indoor

COLLOCATION and CALIBRATION Results

Collocation: Indoor and Ambient

Indoor Collocation: Rural and Urban Households

Ambient Collocation: 1- and 24-hour averaging times

Ambient PM monitoring: Precision test

Black Carbon:PM ratio

Indoor PM monitoring: Hour of the day

Personal exposures vs LCS PM levels

CONCLUSION

- The bias in indoor LCS collocation was almost constant, while it increased with increase in ambient PM2.5 values
- Humidity correction of LCS is key to reducing bias
- 24-h personal exposures were significantly correlated with 24-h LCS living room PM2.5 concentrations
- Low-cost sensors offer a suitable platform for long-term monitoring of indoor PM in health-effect studies

Dedicated to the memory of and inspired by KIRK R. SMITH

Jan. 19, 1947 – June 15, 2020

- Crusader of 'clean household energy'
 - First person in human history to measure personal exposures to HAP in women in India in 1981
 - Worked in India for over 4 decades on HAP
 - His relentless efforts advocating HAP mitigation in India influenced PMUY policy and research
- His legacy continues to inspire many of us.

Acknowledgements

Study participants TAPHE-2 Research staff

Funding

Indian Council of Medical Research (ICMR), Delhi

Collaborators

Center for study of Science, Technology and Policy, Bengaluru, India ILK Labs, Bengaluru, India St. John's Research Institute, Bengaluru, India Indian Institute of Technology, Delhi, India University of California, Berkeley Implementation Science Network (ISN), US

