From CO and CO₂ Measurements to Emissions Maps

ASIC 2022

Naomi Asimow

Ph.D. Student, U.C. Berkeley Professor Ronald C. Cohen

Urban Emissions & Action Plans

Boston Requires Carbon Neutrality for Existing Buildings

LA City Council Considers Motion To Achieve Carbon Neutrality By 2030

The City of Ithaca voted to decarbonize every single building, becomes first city in the country to do so

Manchester plans for carbon neutral transport network

But how do cities know if their policies are working?

Bottom-Up

What activities release CO₂, how much, and where?

Top-Down How much CO₂ is in the air and where did it come from?

Berkeley Environmental Air-quality and CO₂ Network

What can we say about changes in CO and CO₂ emissions from our $BEACO_2N$ observations?

Inverse Model: Solve for posterior (\mathbf{x}) , given our BEACON measurements (y), and a prior estimate (x_{a}) of CO fluxes

- B = prior error covariance matrix
- H = HRRR-STILT footprints

R = model-data mismatch error covariance

Change in emissions (SIP minus pre-SIP), by hour of day

What do the posterior emissions show about the $CO:CO_2$ emissions ratio?

- Traffic > Stationary Sources
- Old Cars > New Cars
- •LDVs (cars) > HDVs (trucks)
- EMFAC
 - Diesel Vehicles: 0.001
 - Gasoline Vehicles: 0.007

Future Work

- Validate observed CO:CO₂ during COVID using bottom-up methods
- Invert CO and CO₂ together
- Extend this methodology to other years and cities to probe the question: How are urban CO and CO₂ emissions changing as cities enact new climate action policies?

Preliminary Results in Glasgow, Scotland

Carbon Monoxide

- Air quality
 - Serious adverse health effects (~35ppm) due to hemoglobin binding
 - Ozone formation
- Co-emitted with CO₂, can be used as a sector-specific tracer

Meteorology is necessary for distinguishing seasonal changes from emissions changes

6-Week Rolling Median at RFS

Posterior CO Emissions by Sector

Another check: the CO:CO₂ ratio:

Observations show ~30%

decrease during SIP:

But this could just be seasonal:

What do the posterior emissions show about the $CO:CO_2$ emissions ratio?

Data Processing Step:

- 1) Look only in CO region of influence (smaller than CO₂ region of influence)
- 2) Subtract biosphere CO_2 fluxes (the prior, which is constrained using TROPOMI SIF) from total posterior CO_2 fluxes to give anthropogenic CO_2 fluxes
- 3) Exclude outlier pixels (mess up the slope)
- 4) Exclude very small CO₂ fluxes (very large/small ratio)

Off-Road Vehicles (~87.6 tons/day to water; ~333.6 tons/day to land)

Combustion/Stationary:

- Point Sources BAAQMD tells us where 22 of 35 tons/day are emitted. Distribute the remainder to CO2 emissions sources that *don't* overlap
- Home Heating No data on emissions factors changing over time. Just scale with a single factor

NEI2011 used for course inventory outside our region

Recall seasonal effects...

6-Week Rolling Median at RFS

Are we removing all seasonal/meteorological effects? Before Period 2020 Difference 2020 After Period 2020 0.010 0.003 0.002 0.008 0.001 Flux [tCO/km²/hr] Flux [tCO/km²/hr] 0.006 0.000 Before Period 2021 After Period 2021 Difference 2021 0.004 -0.001 g 0 0.002 -0.0020.000 -0.003

Are we removing all seasonal effects (CO₂)?

0.8

24

B is composed of a temporal and spatial covariance matrix

Spatial index

Before Shelter-In-Place (Feb 2 - Mar 14)

