

IoT VOC Monitoring with a Fully Autonomous MEMS-based micro-GC

Presented by:

Nabil Saad, Ph.D.

Omniscent Platform

Analytic MEMS Sensor

- Simultaneous multi-gas detection
- LoD < 1ppb
- Dual detectors
- Ambient air as carrier gas
- Low power consumption

OMNI-2200

- Autonomous, Remote Management
- BTX speciation
- WiFi / LTE connection
- Edge computing
- Lightweight 10.4 lb

Analytics (OMAP)

- Cloud Analytics
- Remote management via Internet
- Data Visualization on portal
- End-to-end data encryption
- User-defined alerts & notifications

Micro-GC MEMS Chip Architecture

MEMS Chip Components

- Pre-concentrator
 - ✓ Two sorbent beds in series:
 (Carbopack X[™] & Carbopack B[™])
- Separation column
 - ✔ 0.6m long with an OV-1 equivalent stationary phase
- Two complementary capacitive detectors
- Flow rate sensor
- Four temperature sensors
 - ✓ One for the Pre-concentrator
 - ✓ Three for the serpentine GC column

Monolithic MEMS μ GC Chip

Proprietary MEMS µGC Benefits

A monolithic µGC chip based on Micro-ElectroMechanical Systems Technology

• Benefits of MEMS

- ✓ Small, light weight
- ✓ Integrated, repeatable, rapid, and low-power temperature control
- ✔ High throughput batch production
- Benefits of monolithic integration
 - ✓ Simplifies assembly post-fabrication
 - ✔ Reliable fluidic interconnect between µGC components

Current Gas Library

Current Library

- Benzene
- Toluene
- Ethyl Benzene
- m-Xylene
- o- Xylene
- Next Library
 - Styrene
 - Methylal

Gases detected by Current MEMS

Colum	n:		#	Chemicals
	no n-p ola r	Alkanes	a1	<i>n</i> -pentane
			a2	<i>n</i> -hexane
			a3	<i>n</i> -heptane
			a4	<i>n</i> -octane
			а5	<i>n</i> -nonane
n-			a6	<i>n</i> -decane
		ahydroca	b1	benzene
			b2	toluene
			b3	<i>m</i> -xylene
	r		b4	o-xylene
L			b5	mesitylene
		Haloge nil nated ly hydroca po rbons & ar aldehyd	с1	hexanal
			c 2	chlorobenzene
dly -po			с3	chlorohexane
			c4	4-chlorotoluene
			с5	1,3-dichlorobenzen
	es	00	е	
			c6	Tetrachloroethene
	n-p	Terpen es & other	d1	cycloheptane
			d2	α-pinene
			d3	3-carene

Proprietary MEMS µGC Workflow

*Scrubbed ambient air used as the carrier gas during separation

MEMS Micro-GC Operation

Vapor sampling

Separation

User-programmable sampling time (Sampling flow ≈17 sccm)

- 2 minutes for high concentration levels (≥200 ppb)
- 10 minutes for low concentration levels (≥10 ppb)
- 40 minutes for ultra-low concentration levels (≤1ppb)

Other steps

- Purging steps for regenerating the analytical path for the next run
- Temperature stabilization
- Data processing and upload

Parameters optimized by Omniscent staff

Tolerance to Environmental Stressors

• Humidity

- ✓ Nafion[®] tube used in the sampling flow path to remove sample moisture
- ✓ Moisture filter used in the separation flow path to remove carrier gas moisture
- ✓ Both Nafion[®] & the Moisture Filter are self-regenerated in situ

Design Enhancements

- Hermetically sealed enclosure with O-ring:
 - I Hermetically sealed enclosure design for high RH tolerance
 - All connectors are tight-sealed to unit enclosure
 - Equipped w/ Internal Heater for < 5°C ambient temp</p>
 - All units tested in environmental chamber for:
 - ✓ RH ≥95%
 - ✓ Temperature range (0°C 60°C)
- False-Positive VOC Flagging (based on Det1/Det2).
- Continuous Operation mode (endless # of cycles).
- Weather sensor config & link to the full meteorological data page
- · Coating of all electronic board with water resistant film.

OMNI-2200

Proprietary MEMS µGC Dual Detectors

Capacitive Detector Structure

- Interdigitated thin metal electrodes on glass
- Vapor-sensitive polymer (OV-1 equivalent) covers electrodes
- Capacitance change (ΔC) by polymer swelling and change in dielectric constant (ϵ) upon vapor absorption

Principle of detection

- CapDet1:**Thin** OV-1 coating; ΔC dominated by swelling; $+\Delta C$ for all chemicals.
- CapDet2:**Thick** OV-1 coating; ΔC dominated by **E**-change; + or ΔC depending on $\mathbf{E}_{chemical} \mathbf{E}_{OV-1}$

Compound Identification Using Two Detectors

Peak height ratio of our two detectors

(ΔC1/ΔC2):

- Provides an extra level of chemical
 - identification beyond just the retention

time metric

• $\Delta C1/\Delta C2$ is:

- ✓ ≈ -3 for Benzene
- ✓ Between 0 & -0.5 for alkanes
- ✓ >0 for polar & mildly-polar chemicals

Web-based User Interface

Omniscent BTX Fenceline Monitoring

Solar-Power Option

- Solar-powered
- Onboard WiFi
- Anemometer
- Mobile platform

- 240 Watt PV system
- Sustains 6.5 days of no-sun
- 265 A-hr Battery

This platform is conducive for emissions monitoring in remote locations

Field Deployment

- Small & simple form factor to deploy in tight spaces.
- Easy access to web interface (portal) for data viewing & retrieval.
- Ext alerts for threshold exceeding user-set VOC values.
- Flexible sampling times and intervals.
- Solar power for off-grid operation.
- Wind speed & direction measurements for emissions source attribution.

Deployment in CA

Refinery Deployment in Texas

Fast GC Analysis – High Conc. Scenario

OMNI-2100 µGC achieves ultrafast analysis of BTX in less than 40sec cycle

COP26 & Methane Monitoring

□ US & EU announced joint pledge to cut Methane emissions.

- □ Commitment to reduce 30% Methane emissions by 2030.
- **300,000** Oil & Gas well sites to be monitored in the US.

Omniscent Low Cost IoT Methane Sensor

- A new high-performance, low-cost and small-size NDIR sensor module with sub-ppm resolution.
- \square Measures CH₄ at **0.1ppm** resolution.
- \square Measures H₂O & reports dry mole fraction.
- □ Measures Total Hydrocarbons at 1ppm resolution.
- □ GPS + WiFi/Cell.
- □ Commercial units available in Q4.