

VIEI FUIL

Feasibility study on the application of low-cost sensors for epidemiological investigations

<u>Chacón Mateos</u>, M.; Vogt, U.; Laquai, B; Chourdakis, I.; Solís Castillo, G. C.; García Salamero, H.; Heimann, F.; Liebers, U. and Witt, W.

Low-cost sensors (LCS) – expanding horizons in AQ monitoring

Objectives of the pilot project

- Design of a measurement strategy for the use of low-cost sensors for epidemiological investigations → Focus in QA/QC
 - Evaluation and selection of LCS for NO₂ and PM2.5
 - Design of sensor boxes for indoor and outdoor monitoring
 - Carry out the pilot project with COPD and Asthma patients
 - Evaluation of the uncertainty

ANN: artificial neural networks COPD: chronic obstructive pulmonary disease LCS: low-cost sensors LR: linear regression MLR: multilinear regression QA: quality assurance QC. Quality control RF: random forest SVR: support vector regression

Evaluation and selection of LCS for NO₂ in a climatic chamber

- Relative humidity: 15 - 80 %,
- Temperature:
 18 43 °C
- NO₂ concentration:
 0 230 ppb

University of Stuttgart - Miriam Chacón-Mateos

Evaluation and selection of LCS for PM2.5 in a particle chamber

Design of sensor boxes for indoor and outdoor monitoring

Basic components:

• Alphasense NO₂ B43F

• Alphasense OPC R1

• IST AG HYT221 (Temp, RH sensor)

Microcontroller: Arduino UNO + Datalogger

Low-cost dryer for PM sensor

Measurement strategy

Phase

Phase

Phase

Calibration-Training/Validation-Testing

- Indoor boxes → 14 days co-location in the laboratory
- Outdoor boxes \rightarrow 14 days co-location in University of Stuttgart monitoring station

Measurements in the houses of 7 patients with COPD or Asthma for 30 days

- Indoor and outdoor boxes with NO₂ and PM sensors
- Passive samples for NO₂
- Environmental questionnaire (once)
- Protocol of activities (daily)
- Symptomatic questionnaire + Spirometry (daily)
- Feedback (once)

Data post-processing and evaluation

COPD: chronic obstructive pulmonary disease

How to evaluate the performance of the LCS during the campaign? 1. Passive samples

ANN: artificial neural networks MLR: multilinear regression RF: random forest SVR: support vector regression

How to evaluate the performance of the LCS during the campaign? 2. Identifying possible sources of air pollution indoors

The protocol of activities helps to identify the sources of PM peaks

Indoor

How to evaluate the performance of the LCS during the campaign? 3. Comparison with official monitoring stations

University of Stuttgart - Miriam Chacón-Mateos

Evaluation of the measurements during the validation/testing period

Conclusions

- Low concentrations has higher uncertainties with LCS, but peak concentrations are well detected → symptoms and pollutions peaks can be correlated
- LCS are a useful tool to characterize the local air quality in the surroundings of the patients.
- A combination of reference devices and LCS is the key to a successful study.

Thank you!

Miriam Chacón Mateos

e-mail Miriam.chacon-mateos@ifk.uni-stuttgart.de

University of Stuttgart Institute of Combustion and Power Plant Technology Pfaffenwaldring 23 • 70569 Stuttgart • Germany

ıfk