Improvements in assessing HAPs (Hazardous Air Pollutants), not just NAAQS, using air sensors

84

Asthe A

Early Air Sensors ...

- Initial products were very low cost
- Time-resolved streaming data was fun
- Maybe better at T or RH than tVOC

SO, are they useful or should be abandon them?

<u>Applications</u> Education

Project-Based Learning in Rural Schools9 years, 3000+ high school students,200 CU students

- Quantification is not critical
- Low cost opens more doors
- Support learning with CU students

•

<u>Applications</u> Near source impact & emissions quantification

- Quantification of change of concentration is important
- Low cost opens spatial network to explore diffuse sources
- Multi-pollutant capability is critical

<u>Applications</u> Supporting communities that are concerned

- Quantification of spatial difference in concentration is important
- Low cost opens spatial network to that collects data over time
- Multi-pollutant capability is critical
- Short duration pollutant spikes

Spatial network study design

 O_3 (ppb) from C1

Spatial network study design

 O_3 (ppb) from C1

How does that look with real data?

(Slides from 2013 Air Sensors Conference) Quantification in the lab – Metal Oxide Sensors

In lab calibration takes time as you have to cover a lot of parameter space.

 $\frac{R}{R_o} = p_1 T \exp(p_2 C) + p_3 H \exp(p_4 C) + p_5 \exp(p_6 C)$

(Slides from 2013 Air Sensors Conference) Quantification Check – Metal Oxide Sensors

Reference data M-pod chamber calibrated concentration ppm 3 0 01/17 01/18 01/19 01/20 01/21 01/22 01/23

Lab-calibration applied to field data

- Substantial bias was seen in all CO sensors, possibly due to an unmeasured oxidizing gas interfering with the sensor
- Resolving this bias should involve adjustment to the R_o value, the sensor resistance in clean air

(Slides from 2013 Air Sensors Conference) Quantification with colocation – Metal Oxide Sensors

Colocation Calibration

Quantification, best case – Individual Calibration

Timeline	Colocation	Deployment	Colocation
----------	------------	------------	------------

Colocation needs to be in similar environment as deployment – extrapolation is bad

Can we do something to simplify?

normalize the sensor signals

Quantification, simplest case – 1-Calibration

- If the sensor signals are normalized, then this isn't too bad.
- Challenging for spatial network that explores small differences.

Quantification, in between – 1-Hop

 $[tVOC]_{Reference Instr} = f(T_{Pod}, RH_{Pod}, MOx_1, MOx_2)$

 $[tVOC]_{BluePod} = g_i(T_{Pod}, RH_{Pod}, MOx_1, MOx_2)$

Quick check on new approach

	1-Нор	New
R2	0.89	0.96
RMSE	11.5	6.5
MBE	-1.5	0.09

mike basecase TVOC gradboost - Actual vs Predicted

Peak weighting can be useful

with peak weighting

