
Improvements in assessing HAPs (Hazardous Air 
Pollutants), not just NAAQS, using air sensors



Early Air Sensors …

MOx sensor signal
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• Initial products were very low cost

• Time-resolved streaming data was fun

• Maybe better at T or RH than tVOC

5 minute data for 1 day

SO, are they useful or should 
be abandon them?



Applications
Education

Project-Based Learning in Rural Schools
9 years, 3000+ high school students, 
200 CU students

• Quantification is not critical
• Low cost opens more doors
• Support learning with CU students



Applications
Near source impact 
& emissions 
quantification

• Quantification of change of concentration is important
• Low cost opens spatial network to explore diffuse sources
• Multi-pollutant capability is critical



Applications
Supporting communities that are concerned

• Quantification of spatial difference in concentration is important
• Low cost opens spatial network to that collects data over time
• Multi-pollutant capability is critical
• Short duration pollutant spikes



Spatial network study design
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spread bigger than 
noise is a result of 
spatial differences

slope deviation 
from 1:1 indicates 
cold or hot spots

Spatial network study design



D7 stayed at Rubidoux SCAQMD site
D3 was in an industrial park
DC was closest to Highway 91
DA was in a commercial zone

How does that look with real data?



(Slides from 2013 Air Sensors Conference)
Quantification in the lab – Metal Oxide Sensors
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In lab calibration takes time as you have 
to cover a lot of parameter space.

Lab Calibration



Colocation Experiment (sanity check)

Lab-calibration applied to field data 

• Substantial bias was seen in all CO sensors, possibly due to an 
unmeasured oxidizing gas interfering with the sensor

• Resolving this bias should involve adjustment to the Ro value, the 

sensor resistance in clean air

(Slides from 2013 Air Sensors Conference)
Quantification Check – Metal Oxide Sensors



Colocation Calibration
Co-location calibration applied to field data. R2 = .78, 

standard error = 0.24ppm 

(Slides from 2013 Air Sensors Conference)
Quantification with colocation – Metal Oxide Sensors



Quantification, best case – Individual Calibration 

[tVOC]Reference Instr = 𝑓𝑖(𝑇𝑃𝑜𝑑 , 𝑅𝐻𝑃𝑜𝑑 ,𝑀𝑂𝑥1, 𝑀𝑂𝑥2)

Colocation needs to be in similar environment as deployment – extrapolation is bad

DeploymentColocation ColocationTimeline



Can we do something to simplify?

normalize the sensor signals



Quantification, simplest case – 1-Calibration

[tVOC]Reference Instr = 𝑓 (𝑇𝑃𝑜𝑑 , 𝑅𝐻𝑃𝑜𝑑 , 𝑀𝑂𝑥1, 𝑀𝑂𝑥2)

• If the sensor signals are normalized, then this isn’t too bad.
• Challenging for spatial network that explores small differences.



Quantification, in between – 1-Hop

[tVOC]Reference Instr = 𝑓(𝑇𝑃𝑜𝑑 , 𝑅𝐻𝑃𝑜𝑑 , 𝑀𝑂𝑥1, 𝑀𝑂𝑥2)

[tVOC]BluePod = 𝑔𝑖(𝑇𝑃𝑜𝑑 , 𝑅𝐻𝑃𝑜𝑑 , 𝑀𝑂𝑥1, 𝑀𝑂𝑥2)

HarmonizationColocation



Colocation Harmonization

R2 train R2 test RMSE train RMSE test MBE train MBE test

Colocation 0.67 0.63 60.2 50.2 0.05 0.64

Harmonize 0.96 0.55 7.0 10.0 0.02 -1.32

Example for tVOCs in SoCal



[tVOC]Reference Instr = 𝑓(𝑇𝑃𝑜𝑑 , 𝑅𝐻𝑃𝑜𝑑 , 𝑀𝑂𝑥1, 𝑀𝑂𝑥2)

𝑠𝑒𝑛𝑠𝑜𝑟𝑠𝑖𝑔𝑛𝑎𝑙𝐵𝑙𝑢𝑒𝑃𝑜𝑑 = ℎ𝑖(𝑠𝑒𝑛𝑠𝑜𝑟𝑠𝑖𝑔𝑛𝑎𝑙)

Latest quantification scheme

supervised learning regression

normalized sensor signals



Quick check on new 
approach

R2 0.89 0.96

RMSE 11.5 6.5

MBE -1.5 0.09

1-Hop harmonization New harmonization approach

1-Hop New



Supervised learning regression – be careful of overfitting



Choosing  f

linear random forest gradient boosting



Peak weighting can be useful

R2 train R2 test RMSE train RMSE test MBE train MBE test

Random forest
0.62 0.61 63.9 51.5 0.06 1.4

Ran forest with 
peak weighting

0.7 0.63 57.1 50.4 2.9 0.7

with peak weighting



linear random forest gradient boosting

What goes in   f



linear random forest gradient boosting

What goes in   f

Using only 1 MOx sensor



linear random forest gradient boosting

What goes in   f

Using 2 MOx sensors



linear random forest gradient boosting

What goes in   f

All MOx sensors but no T and RH


