

Low-cost PM_{2.5} measurements in a binational metropolitan area along the U.S.-Mexico border

<u>Mayra Chavez</u>¹, Leonardo Vazquez¹, Yazmin Hernandez Garcia², Frida Toquinto Manjarrez², Evan Williams¹, Adrian Vazquez Galvez², Wen-Whai Li¹

¹University of Texas at El Paso, El Paso, TX, USA. ²Universidad Autónoma de Ciudad Juárez, Ciudad Juarez, Chihuahua, Mexico MAY 13, 2022

- The project installed an air monitoring network in the PdN to measure PM_{2.5}, at 31 sites in El Paso and Ciudad Juarez (Cd. Juarez).
- The sampling project time was 2 months.
- The 15-month, collaborative effort between the University of Texas at El Paso (UTEP) and Universidad Autonoma de Ciudad Juarez (UACJ).

Research Objectives

Goals:

- **Improve air quality monitoring in the border region;**
- Produce a case study of scientific measurement and analysis of air quality using low-cost air sensors;
- Foster binational technical exchange between government agencies and research institutions in the Paso del Norte (PdN).

Objectives:

- Provide real-time spatial and temporal concentration patterns of PM to the public.
- Assess air quality and emissions associated with transportation by developing an algorithm to predict air pollution for near-road receptors using land-use regression technique.

Task 1

- Elementary Schools
- 17 total sites
- 12 sites in El Paso
- 5 sites in Cd. Juarez.
- Task 2
 - Industrial Sites
 - 14 total sites
 - 7 in areas of high vehicular flow
 - 7 in areas of low vehicular flow

Map of Purple Air Locations for the PdN including Annual Average Daily Traffic (AADT)

Data correction methodology

(UAC J

- All sensors were compared first co-located with TCEQ's FRMapproved PM_{2.5} monitor.
- 15 day period

48 sensors immediately adjacent to TCEQ's CAMS 12 site.

- Evaluate the correlations between the low-cost sensor and the reference station.
- The data generated by the monitors was calibrated according to the methodology of Munir et. al., (2019).
 - Multiple regression model was developed, including humidity and temperature variables:

 $Ref = \beta_0 + \beta_1(Sensor) + \beta_2(HR) + \beta_3(Temp) + \varepsilon$

Data Acquisition

Preliminary Data Cleaning

- Data is uploaded to "Thingspeak" servers
- Data is downloaded

Data outside of operating range eliminated

• Humidity

• PM_{2.5}

Parameter	Operation Range		
Effective Range (PM _{2.5} standard)	0 to 500 μ g/m ³		
Maximum Range (PM _{2.5} standard)	≥1,000 µg/m³		
Temperature Range	-40 °F to 185 °F (-40°C to 85°C)		
Humidity	Response time (⊤63%): 1 s Accuracy tolerance: ±3% RH Hysteresis: ≤ 2% RH		

In-depth Cleaning

Hourly Averaged Data Set

- Create a PM_{2.5} Hourly Mean between channel A/B
- Length of Data is not <20
- Length of Data is not <75%
- A/B Percent Difference is not >70%
- A/B Hourly Difference is not > 5

Correlation analysis: Duplicated Sensor Sites

- 12 sites with duplicates,
 represents ~38% of the
 monitoring network
- **Correlation** greater than 0.97
- Equipment works correctly, in relation to other PurpleAir sensors.

ID	Name on PurpleAir	AADT	Type of Site	R ²	
C2	Zavala 2	High	Elementery Cabool	0.00	
C23	Zavala	High	Elementary School	0.99	
C4	Aoy 2	Uiah	Elementary School	0.06	
C10	Aoy	підп	Elementary School	0.90	
C22	Park 2	Low	Low	Flomentary School	0.00
C11	Park	LOW	Elementary School	0.90	
C5	UTEP 3		Calibration Site	0.09	
С7	UTEP 1	High	Calibration Site	0.90	
C6	UTEP 2		Calibration Site	1 00	
С7	UTEP 1	mgn		1.00	
C6	UTEP 2		Calibration Site	0.94	
С5	UTEP 3				
C26	UACJ-PAC22	High	Industrial Sector	0 99	
C27	UACJ-PAC21	mgn	muusti iai Sector	0.77	
C28	UACJ-PAC20	High	Industrial Sector	0.97	
C29	UACJ-PAC19	mgn	industrial Sector		
C30	UACJ-PAC23	High	Industrial Sector	0.98	
C31	UACJ-PAC24	mgn			
C35	UACJ-PAC26	High	Industrial Sector	0.99	
C34	UACJ-PAC25	mgn			
C44	UACJ-PAC09	Low	Industrial Sector	0.98	
C45	UACJ-PAC10	1011	maastriai beetoi	0170	
C42	UACJ-PAC02	Low	Industrial Sector	0.98	
C43	UACJ-PAC03		muusti iai seetoi	0170	
C32	UACJ-PAC17		Industrial Sector	0.99	
C33	UACJ-PAC18		maastriarseet01	0177	
C38	UACJ-PAC05	Low	Industrial Sector	0.97	
C39	UACJ-PAC06	1000			

Results: Daily PM_{2.5} Variation

- Hourly PM_{2.5} data during
 study period summarized to
 show the diurnal variation at
 sensor locations in the PdN.
- Most sensors showed PM_{2.5} concentration peaks in afternoons or early evenings before 8:00 p.m.
- Low PM_{2.5} were observed during the nights before the vehicle flow started to increase (6:00 h).

- Averages for all sensors
 are plotted from March –
 April
- Period Average suggests that the concentration of
 Cd. Juarez is higher than the concentration of El
 Paso

UP Heat Map of PM_{2.5} Max 1-hr & Max 24-hr

Heat map shows 1-hr average PM concentration variation throughout the basin. The max 24-hour average showed the pollutant varied slightly, higher concentrations in the southern regions of **Ciudad Juarez.**

Surface Meteorological Conditions

Wind predominantly coming from west and southwest directions

Device And Use Linear Regression

Algorithm developed to analyze pollution in relation to predictor variables associated with land use of an area.

Variables:

- Distance to the nearest major arterial road
- Street length within 500m impact zone
- Street length within 1000m impact zone
- Distance to the nearest port of entry (POE)
- Traffic vehicle miles traveled within 500m zone
- Traffic vehicle miles traveled within 1000m zone.

Univariate Linear Regression

- Distance to nearest POE was found to be the only significant traffic variable in modeling of $PM_{2.5}$ for the period average ($\beta 1 = -0.190$, p-value=0.024).
- High PM_{2.5} value is related tothe shorter distance to the POE.
- PM_{2.5} value increases by 0.190 µg/m3 per one-unit decrease of Distance nearest Major POE (in km)

Yvar		Traffic Variables	Estimate	Std. Error	t value	Pr(> t)
PM _{2.5} Period Average	0m Traffic Variables	(Intercept)	4.222	0.180	23.411	0.000
		Distance nearest Major Arterial	-1.091	1.589	-0.687	0.504
		Street Length 1000m	-0.049	0.037	-1.336	0.204
		Distance nearest Major POE	-0.190	0.075	-2.545	0.024
	50	VMT 1000m	-0.001	0.003	-0.281	0.783
PM _{2.5} Period Average	00m Traffic variables	(Intercept)	4.205	0.200	20.975	0.000
		Distance nearest Major Arterial	-1.807	1.750	-1.032	0.321
		Street Length 500m	-0.037	0.072	-0.508	0.620
		Distance nearest Major POE	-0.140	0.085	-1.640	0.125
	10(VMT 500m	-0.008	0.008	-0.984	0.343

Correlations:

Consistency between Channel A and Channel B values in each individual sensors,

- Generally, R² of 0.8
- **Consistency between duplicate sensors at deployed sites**
 - Vary in correlation but generally good R²
- Correlation between collocated sensors at Federal
 Reference Method (FRM) or Federal Equivalent Method
 (FEM) stations
 - Varied over time, decreased from December to April months.

Sensors collocated in school zones in El Paso:

- High AADT sites measured a slightly higher average (9.26±0.59) μg/m3 than that presented in low AADT sites (8.63±0.54) μg/m3.
- Ciudad Juarez two site categories: 1) school zones, and 2) industrial zones.
 - In school zones, high AADT sites registered values of (11.66±0.87) μg/m3
 - In the industrial zones, high AADT sites measured (9.48±0.61) μg/m³
 which was lower than measured at low AADT sites (10.06±1.07) μg/m³.
 - due to construction in low AADT sites during study period

- **Limitations and Future Studies Considering the number of identifiable traffic and geographic variables, the application of the LUR model in this study requires**
- further investigation
 - Traffic variables based on long-term measurements
 - Traffic-related variables currently not available in Ciudad Juarez and other data.
- The monitoring campaign extended for a 12-month period in the PdN.
- Collocated monitoring at two reference stations will be continued for quality control and performance evaluation of the low-cost sensors.

UTEP

Wen-Whai Li, Ph.D., P.E. (Co-Principal Investigator)

```
Mayra Chavez, Ph.D. (Co-Principal Investigator)
```

Leonard Vazquez (Co-Researcher)

UACJ

Adrian Vazquez Galvez, Ph.D. (Co-Principal Investigator) fvazquez@uacj.mx

Yazmín Hernández García, M.S. (Co-Investigator) yazmin.hernandez@uacj.mx

Frida Toquinto Manjarrez, Engr. (Co-Researcher) Frida.toquinto@uacj.mx

Acknowledgements

We would like to acknowledge the staff of Texas Commission on Environmental Quality (Melanie Scruggs, Eddie Moderow, and Sergio Vasquez) and the El Paso Independent School District (Alan Wiernicki, Ernesto Ortiz, Jose Parga, and Abel Carreon) for all their help in facilitating this project and the subsequent tasks in the following year. This project was supported by a grant from Texas Commission on Environmental Quality via the University of Texas at Austin. The contents of this presentation are solely the responsibility of the authors and do not necessarily represent the official views of