Air Sensors International Conference May 2022

Dan Johnson, Oregon DEQ

Dan Johnson | Oregon Department of Environmental Quality

SensOR Team

Anthony Barnack (Project Mgr: Anthony.Barnack@deq.oregon.gov) Daniel Johnson (Outreach: Daniel.Johnson@deq.oregon.gov) Lance Hochmuth Aaron Fellows Luke Mattheis Marissa Meyer

Monitoring Cost and Accuracy

Sensor evaluation by South Coast AQMD at http://www.aqmd.gov/aq-spec

Near real time information for public health guidance (Nowcast AQI)

https://oraqi.deq.state.or.us/home/map and OregonAir mobile apps

Why build a low-cost PM sensor package at DEQ?

• Received funding in 2017 to add 30 new sites

• Completed Spring 2022

- Expand PM-2.5 monitoring using an approach that is consistent with existing methods in Oregon
 - Measurement & QA/QC approach
 - Use existing IT and AQM network infrastructure
- Provide <u>publicly-owned</u> near real-time data
 - Shared through AirNow Tech
- Provide data of known quality (e.g., traceable)
- Data should meet DEQ data quality objectives

Oregon DEQ data quality objectives

• Data completeness >= 75%

https://www.oregon.gov/deq/FilterDocs/aqmlowcost.pdf https://www.oregon.gov/deq/FilterDocs/aqmtargets.pdf

• Air Quality Index data should be within +/- 20% FRM Data

State of Oregon Department of Environmental Quality Air Quality Monitoring Performance Targets¹

Application	Pollutants	Precision & Accuracy ²	Examples	Supporting Documentation
Regulatory or compliance monitoring, Air toxics monitoring ³	Ozone, PM2.5, CO, NO2, SO2, Lead, VOCs, HAPs ³	+/- 10%	Filter-based FRM⁴ sampler, Continuous FEM⁵ PM monitor, FEM ozone analyzer, EPA laboratory protocols	40 CFR parts 50, 53, and 58, National Air Toxics Trend Station Technical Assistance document
Supplemental monitoring, Special studies, Real-time Air Quality Index	Ozone, PM2.5, H2S, VOCs, Meteorology	+/- 20%	Nephelometer, E-BAM, H2S monitor for odors, Calibrated met station, Sensor-based with quality control and validation	Organization's approved quality assurance plan or sampling analysis plan
Area and source surveys, Screening; Fenceline monitoring, Personal exposure	Ozone, PM2.5, NO2, VOCs, Meteorology	+/- 30%	Calibrated sensors, Home met station	EPA Air Sensor Toolbox
Information, Education, Community monitoring	Ozone, PM2.5, NO2, CO, VOCs and others	+/- 50%	Low-cost sensors, Personal monitors	South Coast AQMD Air Quality Sensor Performance and Evaluation Center

1 This document is for informational use only. DEQ makes no claim, warranty or guarantee of instrument performance when operated by users for their specific applications.

2 These guidelines are likely to evolve as technology and science advance.

3 Hazardous air pollutants or air toxics

4 Federal Reference Method

5 Federal Equivalent Method

Association of Public Health Labs / EPA

From "Working Together to Improve Citizen Science Data Quality: A Guide for Government Agencies" https://www.epa.gov/system/files/documents/2021-11/aphl-epa-citizenscience-qualityassurance-orientationguide.pdf

Approach

- Treat SensOR[™] similar to the nephelometer
- Inline sensors run at multiple sites for at least 30 days
- Correct Plantower output to nephelometer back scatter (BScat)
 - Range of corrections is +/- 20%
- Use nephelometer to Federal Reference Method (FRM) correlations specific to each site as implemented over many years in OR
 - Range of correlations is +/- 15%
 - Wildfire correlation is different from winter time correlations
- Quarterly maintenance checks
 - Sensors don't respond to calibration gas
- Verify with collocated sites and performance audits
 - 10% of samplers collocated
 - ARP Grant funding for three BAM 1022s to verify and improve SensOR PM2.5 estimates

Use Nephelometer as a 'transfer standard' to correlate PM 2.5 estimates

Inline comparison with Radiance M903 Nephelometer

SensOR uses site correlations to FRM

Comparison of inline sensor to Nephelometer Bscat

 XY: (X)Hillsboro Hare Field[Pm2.5_5003 sensor A] (Y)Hillsboro Hare Field[Neph]
 Periodically: 11/1/2019 1:00 AM-3/1/2020 12:00 AM 1 Hr.

 Report Type:
 XY
 Avg Type: AVG
 Slope:
 0.0235

 Date & Time:
 11/1/2019 1:00 AM-3/1/2020 12:00 AM
 Time Base:
 1 Hr.
 Intercept:
 0.2562

 XY: (X)Hillsboro Hare Field[PM2.5_5003 sensor B] (Y)Hillsboro Hare Field[Neph]
 Periodically: 11/1/2019 1:00 AM-2/26/2020 12:00 AM 1 Hr.

 Report Type:
 XY
 Avg Type: AVG
 Slope:
 0.0267

 Date & Time:
 11/1/2019 1:00 AM-2/26/2020 12:00 AM
 Time Base: 1 Hr. Intercept
 0.2603

AQI categories aren't created equally

USG is the most difficult target...

...and the most important

Central Oregon Air Quality Network

Designed their sensor in partnership with OSU Cascades.

(aqi.espacelabs.us)

Oregon DEQ data quality objectives

• Data completeness >= 75%

https://www.oregon.gov/deq/FilterDocs/aqmlowcost.pdf https://www.oregon.gov/deq/FilterDocs/aqmtargets.pdf

• Air Quality Index data should be within +/- 20% FRM Data

State of Oregon Department of Environmental Quality Air Quality Monitoring Performance Targets¹

Application	Pollutants	Precision & Accuracy ²	Examples	Supporting Documentation
Regulatory or compliance monitoring, Air toxics monitoring ³	Ozone, PM2.5, CO, NO2, SO2, Lead, VOCs, HAPs ³	+/- 10%	Filter-based FRM⁴ sampler, Continuous FEM⁵ PM monitor, FEM ozone analyzer, EPA laboratory protocols	40 CFR parts 50, 53, and 58, National Air Toxics Trend Station Technical Assistance document
Supplemental monitoring, Special studies, Real-time Air Quality Index	Ozone, PM2.5, H2S, VOCs, Meteorology	+/- 20%	Nephelometer, E-BAM, H2S monitor for odors, Calibrated met station, Sensor-based with quality control and validation	Organization's approved quality assurance plan or sampling analysis plan
Area and source surveys, Screening; Fenceline monitoring, Personal exposure	Ozone, PM2.5, NO2, VOCs, Meteorology	+/- 30%	Calibrated sensors, Home met station	EPA Air Sensor Toolbox
Information, Education, Community monitoring	Ozone, PM2.5, NO2, CO, VOCs and others	+/- 50%	Low-cost sensors, Personal monitors	South Coast AQMD Air Quality Sensor Performance and Evaluation Center

1 This document is for informational use only. DEQ makes no claim, warranty or guarantee of instrument performance when operated by users for their specific applications.

2 These guidelines are likely to evolve as technology and science advance.

3 Hazardous air pollutants or air toxics

4 Federal Reference Method

5 Federal Equivalent Method

Association of Public Health Labs / EPA

From "Working Together to Improve Citizen Science Data Quality: A Guide for Government Agencies" https://www.epa.gov/system/files/documents/2021-11/aphl-epa-citizenscience-qualityassurance-orientationguide.pdf

How do I make my data count?

- Define the monitoring objective
 - What data quality is needed?
- Develop a monitoring plan and a QA plan
 - Describe the process in detail
 - Ask questions to support and defend the data
 - How can you verify the data quality objectives are met?
- Validate the data
 - Are the monitoring objectives achieved?
 - Refine and improve the process as needed

Quality Assurance Handbook and Guidance Documents for Citizen Science Projects

https://www.epa.gov/citizen-science/quality-assurance-handbook-and-guidance-docu ments-citizen-science-projects