

Using Satellite Data for Health and Air Quality Applications

Kevin Cromar, PhD

Director, Air Quality-Program Associate Professor of Environmental Medicine and Population Health NYU School of Medicine Upcoming Satellite Products Will Enable a New Generation of Health Research

TROPOspheric Monitoring Instrument (TROPOMI)

TROPOMI Highlights

- Launched on October 13 2017 by the European Space Agency
- Global Coverage
- Sub-urban spatial resolution (3.5 x 7 km²)
- 1x/day: NO₂, ozone (0-2 km vertical), aerosol, clouds, formaldehyde, glyoxal, SO₂, CO, methane

Global Pollution Monitoring Constellation (2020s)

- Improved emissions, at common confidence levels, over industrialized Northern Hemisphere
- Improved air quality forecasts and assimilation systems
- Improved assessment, e.g., observations to support United Nations Convention on Long Range Transboundary Air Pollution

TEMPO: Tropospheric Emissions: Monitoring of Air Pollution

- Geostationary over North America
- High Temporal Resolution
 1 hr
- High Spatial Resolution
 - 2.2 x 4.7 km²
- Spectral Range
 - 290-740 nm
- Data Products:
 - O₃, NO₂, C₂H₂O₂, aerosols, cloud parameters, & UVB radiation
- Expected Launch: 2021

Creating a Health-based Air Quality Index using Global Modeling Data

NASA's GEOS-CF System

Global air pollution model with forecasting capabilities:

- •The GEOS model/assimilation system (meteorology, transport, etc.)
- •Aerosols from NASA's GOCART module
- •Dynamic emissions modules
- •The GEOS-CHEM chemical mechanism
- •Many [NASA] observations of physical and chemical parameters (i.e., distribution of fires, vegetation, ocean color, etc.)

Target date for routine production system is early 2019

Good	Satisfactory	Moderate	Poor	Very Poor	Severe
0-50	51-100	101-200	201-300	301-400	>401

Initial search terms were run through the Ovid Medline, Embase, CINAHL, Wiley Cochrane, CENTRAL, and Web of Science. **Terms included air pollution terminology, specific respiratory outcomes and a list of countries** in order to capture any studies with data from developing nations.

The resulting 5,868 results were screened using Covidence online software, restricting results to systematic reviews and meta-analyses. Title and abstract screening. Remaining articles were downloaded and a **full text** screening was performed to remove remaining mortality-only studies, as well as articles not reporting on one of the four focus pollutants (PM_{2.5}, O₃, NO₂, SO₂) or not providing relative risks by continuous pollutant concentration change.

32 systematic reviews and meta-analyses were extracted and from these, a total of **75 relevant studies were pulled and summarized** in a preliminary database.

PM2.5 Concentration (ug/m3)

Verification using Population Health Data

Marron Institute of Urban Management

Verification using Index Value Distributions

Urban Extent & City-Level Pollution Estimates

Marron Institute of Urban Management

Marron Institute of Urban Management

Summary of Main Points

- •Upcoming satellite data products (e.g., TEMPO, MAIA) will enable a new generation of air pollution health research due to improved spatial, and more importantly, temporal resolution
- Global models (e.g., GEOS-CF) are now able to provide forecasted and real-time pollution estimates at the city-level enabling global risk communication
 Urban extents need to be accounted for when
- estimating city-level air pollution for health purposes