Universal Data Structures for Air Quality Data

Target Audience

- Sensor manufacturers
- Data aggregators
- Local AQ agencies
- National AQ agencies
- NGOs
- Software companies

- Data analysts
- Air quality advisors
- Post docs
- Grad students
- IT teams
- Software developers

Basically, anyone working with AQ data.

Why trust me?

- Grad school experience building instruments
- 30 years doing data visualization
- 12 years running a business writing operational software
- 10 years working with air quality data
- 4 years working with sensor data
- I maintain the **PWFSLSmoke** and **AirSensor** R packages

Data Producers & Data Consumers

Producers

Hardware & Software Engineers

Concerns

- Electronics (amps, ADCs, wifi chips)
- Firmware
- Data transfer protocols
- Real-time data storage and retrieval
- Cost / size / reliability
- Single device type

Consumers

Scientists, Analysts & Statisticians

Concerns

- Data access
- Data usability
- Quality Control
- Statistics
- Data visualization
- Multiple device types

Scientific Data Management

Goal

• Meet needs of engineers and analysts

Concerns

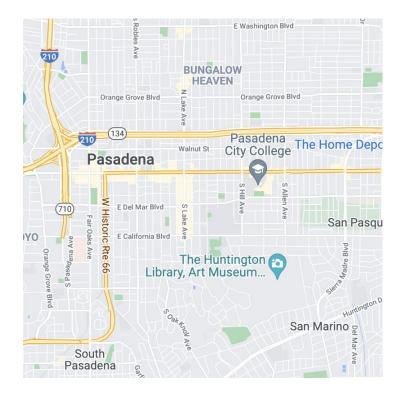
- Engineering variables, units and formats
- Instrument specific concerns
- Analyst general questions
- Raw data ingest
- Data harmonization
- QC algorithms
- Data aggregation
- Data access

Scientific Data Management

- 1. Standardize/harmonize/correct low level data
 - a. Download
 - b. Parse
 - c. Harmonize
 - d. Add metadata
 - e. Quality Control

2. Combine low level data into useful summaries

- a. Aggregate to hourly
- b. Combine multiple time series
- c. Use a common data format
- 3. Make data easily accessible


Google Maps -- low level data

Lowest level has lots of details Each pixel represents ~15 cm Zoom level 21 has **~25,000 Terabytes** of data

Great for diving into the details.

Google Maps -- useful summary 1

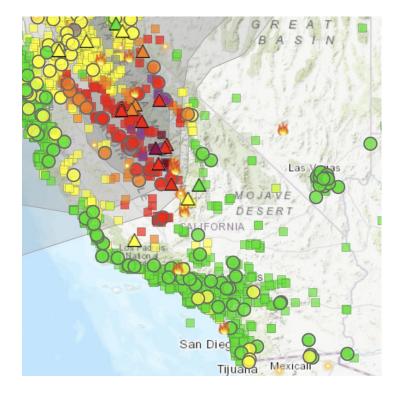
Higher level summary

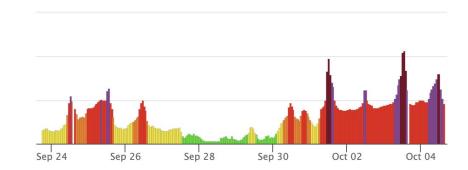

Each pixel represents ~15 m

Zoom level 13 has ~4.4 Terabytes of data

Enhanced with spatial metadata

Great for driving.


Google Maps -- useful summary 2



Even higher level summary Each pixel represents ~1.0 klm Zoom level 7 has **~1.1 Gigabytes** of data Enhanced with elevation data

Great for regional planning.

For Air Quality data, people want maps and time series

Air Quality Data -- low level data

2021-10-07T07:01:002,27.09,27.82,71,53,973.3,18.6,27.09,29.58,18.25,27.82,31.07,6040,-65,18120,0.03,NA,2021-10-07T07:01:492,2021-10-07T07:01:522 2021-10-07T07:03:002,26.95,28.04,71,53,973.28,18.22,26.95,30.05,18.26,28.04,30.93,6042,-63,18120,0.03,Na,2021-10-07T07:03:492,2021-10-07T07:03:522 2021-10-07T07:05:00Z, 26.03, 29.18, 71, 53, 973.28, 17.78, 26.03, 27.13, 19.24, 29.18, 33.6, 6044, -63, 18120, 0.03, NA, 2021-10-07T07:05:49Z, 2021-10-07T07:05:52Z 2021-10-07T07:07:072,26.37,29.52,70,54,973.28,17.87,26.37,28.52,19.5,29.52,33.04,6046,-64,18120,0.03,NA,2021-10-07T07:07:492,2021-10-07T07:07:522 2021-10-07T07:09:002,27,29.75,70,54,973.3,18.78,27,28.91,19.21,29.75,34.82,6048,-65,18120,0.03,NA,2021-10-07T07:09:492,2021-10-07T07:09:522 2021-10-07T07:11:00Z, 28.11, 31.84, 70, 54, 973.34, 19.3, 28.11, 31.58, 20.14, 31.84, 36.42, 6050, -61, 18120, 0.03, NA, 2021-10-07T07:11:49Z, 2021-10-07T07:11:52Z 2021-10-07T07:13:002,27.66,29.53,70,54,973.24,18.53,27.66,30.16,18.51,29.53,33.58,6052,-65,18120,0.03,NA,2021-10-07T07:13:492,2021-10-07T07:13:522 2021-10-07T07:15:002,27.3,30.69,70,54,973.22,18.67,27.3,30.13,19.67,30.69,35.55,6054,-66,18120,0.03,Na,2021-10-07T07:15:492,2021-10-07T07:15:522 2021-10-07T07:17:002,28.32,30.21,70,54,973.21,18.85,28.32,31.75,19.75,30.21,34.84,6056,-65,18120,0.03,NA,2021-10-07T07:17:492,2021-10-07T07:17:522 2021-10-07T07:19:002,28.07,29.89,70,54,973.26,18.79,28.07,31.55,20.02,29.89,34.12,6058,-62,18120,0.03,Na,2021-10-07T07:19:492,2021-10-07T07:19:522 2021-10-07T07:21:002,28.83,30.74,70,54,973.26,18.78,28.83,32.32,20.26,30.74,34.21,6060,-65,18120,0.03,Na,2021-10-07T07:21:502,2021-10-07T07:21:522 2021-10-07T07:23:00Z, 27.97, 30.32, 70, 55, 973.26, 18.27, 27.97, 31.73, 19.66, 30.32, 33.84, 6062, -63, 18120, 0.03, NA, 2021-10-07T07:23:49Z, 2021-10-07T07:23:52Z 2021-10-07T07:25:002,28.89,31.37,69,55,973.34,19.46,28.89,32.41,19.91,31.37,35.46,6064,-66,18120,0.03,NA,2021-10-07T07:25:492,2021-10-07T07:25:522 2021-10-07T07:27:00Z,29.2,30.43,69,56,973.35,19.66,29.2,32.25,19.45,30.43,33.46,6066,-66,18120,0.03,NA,2021-10-07T07:27:49Z,2021-10-07T07:27:52Z 2021-10-07T07:29:00Z,29.03,32.74,69,56,973.38,19.64,29.03,31.95,20.35,32.74,38.35,6068,-63,18120,0.03,NA,2021-10-07T07:29:49Z,2021-10-07T07:29:52Z 2021-10-07T07:31:002,29.65,32.33,69,56,973.41,19.13,29.65,32.77,19.98,32.33,35.98,6070,-61,18120,0.03,NA,2021-10-07T07:31:492,2021-10-07T07:31:522 2021-10-07T07:33:00Z, 28.84, 31.93, 70, 56, 973.4, 19.1, 28.84, 32.08, 19.76, 31.93, 35.84, 6072, -60, 18120, 0.03, NA, 2021-10-07T07:33:49Z, 2021-10-07T07:33:52Z 2021-10-07T07:35:002,28.51,32.33,70,56,973.43,19.25,28.51,31.81,19.93,32.33,36.84,6074,-61,18120,0.03,NA,2021-10-07T07:35:492,2021-10-07T07:35:522 2021-10-07T07:37:002,28,30.07,68,56,973,49,18,73,28,31,81,19,19,30.07,33,49,6076,-67,18120,0.03,NA,2021-10-07T07:37:492,2021-10-07T07:37:522 2021-10-07T07:39:002,28.07,31.05,70,56,973.48,18.82,28.07,30.13,19.68,31.05,35.23,6078,-61,17952,0.03,NA,2021-10-07T07:39:502,2021-10-07T07:39:522

Plus 822 more lines

All Parameters, 1 Day, 1 Sensor (112 Kilobytes)

Great for diving into details.

Air Quality Data -- summary 1

2021-10-07T07:00:00Z, 29 2021-10-07T08:00:00Z, 34 2021-10-07T09:00:00Z, 38 2021-10-07T10:00:00Z, 39 2021-10-07T11:00:00Z, 38 2021-10-07T12:00:00Z, 40 2021-10-07T13:00:00Z, 39 2021-10-07T14:00:00Z, 40 2021-10-07T15:00:00Z, 42 2021-10-07T16:00:00Z, 40 2021-10-07T17:00:00Z, 32 2021-10-07T18:00:00Z, 22 2021-10-07T19:00:00Z, 25 2021-10-07T20:00:00Z, 22 2021-10-07T21:00:00Z, 18 2021-10-07T22:00:00Z, 14 2021-10-07T23:00:00Z, 14 2021-10-08T00:00:00Z, 13 2021-10-08T01:00:00Z, 9 2021-10-08T02:00:00Z, 10 2021-10-08T03:00:00Z, 11 2021-10-08T04:00:00Z, 12 2021-10-08T05:00:00Z, 13 2021-10-08T06:00:00Z, 16

1 Parameter, 1 Day, 1 Sensor

Raw = 112 Kilobytes Summarized = 606 bytes

Great for plotting time series.

Air Quality Data -- summary 2

2021-10-07T07:00:00Z, 28, 28, 26, 29, 28, 26, 26, 27, 24, 20, 17, 19 2021-10-07T08:00:00Z, 31, 31, 28, 34, 33, 28, 27, 28, 27, 24, 20, 23 2021-10-07T09:00:00Z, 32, 31, 31, 38, 36, 30, 29, 29, 31, 31, 24, 24 2021-10-07T10:00:00Z, 36, 31, 36, 39, 37, 35, 31, 33, 35, 36, 28, 24 2021-10-07T11:00:00Z, 37, 33, 35, 38, 37, 34, 33, 34, 34, 35, 25, 28 2021-10-07T12:00:00Z, 36, 28, 36, 40, 38, 36, 32, 33, 36, 34, 27, 23 2021-10-07T13:00:00Z, 38, 32, 37, 39, 39, 36, 34, 35, 35, 34, 25, 28 2021-10-07T14:00:00Z, 38, 36, 39, 40, 38, 38, 34, 36, 39, 39, 29, 32 2021-10-07T15:00:00Z, 37, 36, 39, 42, 38, 38, 32, 34, 39, 40, 30, 31 2021-10-07T16:00:00Z, 35, 34, 35, 40, 38, 35, 31, 33, 36, 37, 28, 32 2021-10-07T17:00:00Z, 15, 32, 31, 32, 31, 31, 16, 16, 31, 31, 21, 30 2021-10-07T18:00:00Z, 8, 27, 24, 22, 15, 23, 7, 7, 24, 27, 17, 25 2021-10-07T19:00:00Z, 7, 20, 22, 25, 21, 22, 8, 8, 22, 21, NA, 21 2021-10-07T20:00:00Z, 23, 12, 15, 22, 21, 16, 21, 22, 15, 13, NA, 11 2021-10-07T21:00:00Z, 17, 11, 13, 18, 16, 13, 16, 17, 13, 12, 10, 9 2021-10-07T22:00:00Z, 15, 12, 12, 14, 13, 12, 14, 15, 11, 11, NA, 10 2021-10-07T23:00:00Z, 14, 12, 11, 14, 12, 11, 13, 13, 11, 11, 8, 9 2021-10-08T00:00:00Z, 12, 9, 11, 13, 11, 11, 11, 12, 10, 9, 7, 9 2021-10-08T01:00:00Z, 9, 7, 9, 9, 7, 8, 8, 9, 8, 7, 6, 5 2021-10-08T02:00:00Z, 9, 8, 9, 10, 9, 8, 8, 8, 8, 8, 7, 7 2021-10-08T03:00:00Z, 8, 9, 9, 11, 9, 9, 8, 8, 9, 11, 6, 7 2021-10-08T04:00:00Z, 6, 12, 11, 12, 11, 10, 7, 7, 10, 11, 7, 8 2021-10-08T05:00:00Z, 7, 13, 12, 13, 12, 12, 7, 7, 12, 12, 8, 8 2021-10-08T06:00:00Z, 11, 14, 15, 16, 16, 15, 11, 11, 15, 15, 9, 11

1 Parameter, 1 Day, 12 Sensors

Raw = 1.34 Megabytes Summarized = 1.58 Kilobytes

Great for maps AND time series.

Air Quality Data – high level summary (*compact!!*)

2021-10-07T07:00:00Z, 28, 28, 26, 29, <mark>28,</mark> 26, 26, 27, 24, 20, 17, 19 2021-10-07T08:00:00Z, 31, 31, 28, 34, 33, 28, 27, 28, 27, 24, 20, 23 2021-10-07T09:00:00Z, 32, 31, 31, 38, <mark>36,</mark> 30, 29, 29, 31, 31, 24, 24 2021-10-07T10:00:00Z, 36, 31, 36, 39, <mark>37,</mark> 35, 31, 33, 35, 36, 28, 24 2021-10-07T11:00:00Z, 37, 33, 35, 38, <mark>37,</mark> 34, 33, 34, 34, 35, 25, 28 2021-10-07T12:00:00Z, 36, 28, 36, 40, 38, 36, 32, 33, 36, 34, 27, 23 2021-10-07T13:00:00Z, 38, 32, 37, 39, 39, 36, 34, 35, 35, 34, 25, 28 2021-10-07T14:00:00Z, 38, 36, 39, 40, 38, 38, 34, 36, 39, 39, 29, 32 2021-10-07T15:00:00Z, 37, 36, 39, 42, <mark>38,</mark> 38, 32, 34, 39, 40, 30, 31 2021-10-07T16:00:00Z, 35, 34, 35, 40, <mark>38,</mark> 35, 31, 33, 36, 37, 28, 32 2021-10-07T17:00:00Z, 15, 32, 31, 32, <mark>31,</mark> 31, 16, 16, 31, 31, 21, 30 2021-10-07T18:00:00Z, 8, 27, 24, 22, 15, 23, 7, 7, 24, 27, 17, 25 2021-10-07T19:00:00Z, 7, 20, 22, 25, <mark>21,</mark> 22, 8, 8, 22, 21, NA, 21 2021-10-07T20:00:00Z, 23, 12, 15, 22, 21, 16, 21, 22, 15, 13, NA, 11 2021-10-07T21:00:00Z, 17, 11, 13, 18, 16, 13, 16, 17, 13, 12, 10, 9 2021-10-07T22:00:00Z, 15, 12, 12, 14, 13, 12, 14, 15, 11, 11, NA, 10 2021-10-07T23:00:00Z, 14, 12, 11, 14, 12, 11, 13, 13, 11, 11, 8, 9 2021-10-08T00:00:00Z, 12, 9, 11, 13, 11, 11, 11, 12, 10, 9, 7, 9 2021-10-08T01:00:00Z, 9, 7, 9, 9, <mark>7,</mark> 8, 8, 9, 8, 5 7, 6, 2021-10-08T02:00:00Z, 9, 8, 9, 10, 9, 8, 8, 8, 8, 8, 8. 7. 9, 9, 8, 8, 9, 11. 2021-10-08T03:00:00Z, 8, 9, 9, 11, 6. 2021-10-08T04:00:00Z, 6, 12, 11, 12, <mark>11,</mark> 10, 7, 7, 10, 11, 7, 8 2021-10-08T05:00:00Z, 7, 13, 12, 13, 12, 12, 7, 7, 12, 12, 8, 8 2021-10-08T06:00:00Z, 11, 14, 15, 16, 16, 15, 11, 11, 15, 15, 9, 11

Time Series

Мар

A Maximally Compact "Universal" Data Model

For "stationary" time series only

All time dependent measurements go into a 'data' table

All static, spatial/instrument metadata goes into a 'meta' table

A unique 'deviceDeploymentID' connects the tables

Air Quality Metadata – high level summary

deviceDeploymentID

deviceDescription units dataIngestUnitID locationID latitude

stateCode houseNumber zip airnow siteCode airnow agencyName airnow EPARegion airnow FIPSMSACode wrcc type wrcc monitorType

deviceID deviceExtra dataIngestSource dataIngestExtra locationName elevation countyName street AOSID airnow status airnow MSAName wrcc serialNumber

deviceTvpe pollutant dataIngestURL dataIngestDescription longitude countryCode timezone citv airnow parameterName airnow agencyID airnow GMTOffsetHours address wrcc monitorName

Only 1 entry per "device-deployment".

Compact 'meta' table – '*ID' is the primary key*

ID	locationName	longitude	latitude	elevation	countryCode	stateCode	county	timezone
1	Fairhope, Alabama	-87.9	30.5	37.2	US	AL	Baldwin	America/Chicago
2	Ashland	-85.8	33.3	344.	US	AL	Clay	America/Chicago
3	Muscle Shoals	-87.6	34.8	122	US	AL	Colbert	America/Chicago
4	Muscle Shoals	-87.6	34.8	122	US	AL	Colbert	America/Chicago
5	Crossville	-86.0	34.3	500	US	AL	DeKalb	America/Chicago
6	Brewton (Closed 12/30/07)	-87.1	31.1	50	US	AL	Escambia	America/Chicago
7	Gadsden C. College	-86.0	34.0	50	US	AL	Etowah	America/Chicago
8	Dothan	-85.4	31.2	102	US	AL	Houston	America/Chicago
9	Dothan (Civic Center)	-85.4	31.2	264	US	AL	Houston	America/Chicago

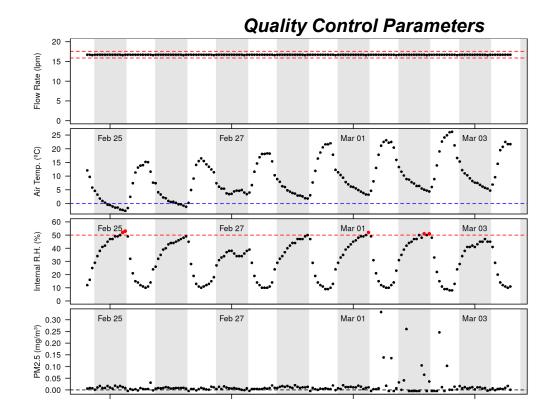
Compact 'data' table

	datetime	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
2020-01-01	05:00:00	NA	5.1	1.5	4.4	NA	NA	NA	4.5	8.8	NA	NA	NA	NA	NA	NA	2.9	4.6	NA	NA
2020-01-01	06:00:00	NA	4.2	0.5	5.7	NA	NA	NA	4.3	7.6	NA	NA	11.0	NA	NA	7	2.7	6.6	NA	3.3
2020-01-01	07:00:00	NA	3.0	0.3	5.5	-2	NA	NA	4.3	5.2	NA	NA	4.3	349.0	NA	5	2.2	4.8	NA	4.8
2020-01-01	08:00:00	2	3.3	0.7	5.8	-1	26	17	4.5	6.5	11	NA	4.8	462.9	105	4	1.9	3.0	16	4.2
2020-01-01	09:00:00	3	3.0	1.0	5.8	1	27	42	5.4	7.2	7	NA	6.4	549.8	118	4	1.9	2.4	14	4.5
2020-01-01	10:00:00	4	3.8	0.8	5.8	1	27	22	5.6	8.4	9	NA	7.4	550.0	70	1	1.8	3.3	9	6.5
2020-01-01	11:00:00	3	3.8	1.6	6.1	-1	7	24	5.7	9.2	6	NA	5.3	498.6	66	7	1.7	3.5	8	7.5
2020-01-01	12:00:00	3	3.5	2.7	6.1	0	16	19	5.9	5.7	2	NA	7.3	342.1	76	3	2.0	4.0	5	7.2
2020-01-01	13:00:00	4	3.2	2.6	6.4	1	11	15	4.1	6.7	5	NA	5.8	195.1	70	3	2.5	3.8	5	7.9
2020-01-01	14:00:00	2	2.6	1.5	5.5	0	13	23	2.6	8.1	5	NA	5.2	142.9	55	8	2.3	3.3	6	8.0
2020-01-01	15:00:00	1	2.0	0.5	5.6	0	9	13	2.6	5.5	1	NA	2.8	134.9	54	4	2.5	3.3	7	3.9

Advantages of Meta/Data "Universal" Structure

Simple & Understandable

Maximally Compact


Multiple monitors in a single file

Sufficient for both Maps and Time Series

CSV file format is well understood

Simple web server can serve static files

What about low-level, engineering data?

Data model for low-level, engineering data

Assume interest in a single monitor

'Meta' table is the same (but only has one row)

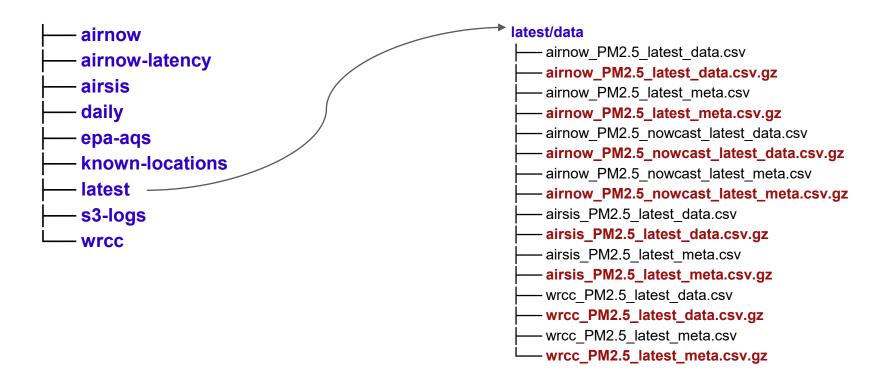
'Data' table has one column per engineering parameter

Similar advantages:

- Simple, understandable data structure
- Maximally Compact
- CSV file format is well understood
- Simple web server can serve static files

Data Access

Jon's favorite data access – download static files


- Easy
- Fast
- All the data at once
- No programming required
- No authentication required

Jon's favorite time series format – CSV

- XML
- JSON
- CSV

http://data-monitoring_v2-c1.airfire.org/monitoring-v2/

Reading in 'csv.gz' data

R

meta <- readr::read_csv("meta.csv.gz")
data <- readr::read_csv("data.csv.gz")</pre>

Python

meta = pandas.read_csv("meta.csv.gz")
data = pandas.read_csv("data.csv.gz")

Thanks for listening!

