Remotely calibrating gas sensor devices in the field

<u>Georgia Miskell¹</u>, David Williams¹, Hamesh Patel¹, Lena Weissert¹, Jenny Salmond¹, Kyle Alberti², Geoff Henshaw²

¹University of Auckland, New Zealand; ²Aeroqual Ltd, New Zealand

SCIENCE

Calibrating Sensor Devices

- Sensors show reduced sensitivity over time when not regularly calibrated.
- Calibration often done using field co-location.
- $_{2}^{\circ}$ Can be difficult to characterise changes in the data.

Calibrating Sensor Devices

- Sensors show reduced sensitivity over time when not regularly calibrated.
- Calibration often done using field co-location.
- $_{3}$ \circ Can be difficult to characterise changes in the data.

Remote Calibration

- Field visits can be time consuming and are unable to update continuously.
- Remote calibration where coefficients are found without co-location – would resolve both these points.
- $_{\odot}\,$ Need a method that is proven to find reliable coefficients.

Calibration Method

- $_{\odot}\,$ Data as running three-day samples.
- High quality measurements provide ground-truth information – "proxies".
- Use land use similarity to improve the proxy sample.
- Verify calibration by co-located regulatory measurements.

Calibration Method

- Assumption One: Sensor data (Y) is linearly related to 'true' concentration (X) over a sample of data.
- \circ Assumption Two: Selected remote proxy data (Z) ~ X.
- Reworking assumptions gives the remote calibration coefficients:

$$\hat{a}_1 = \sqrt{\sigma^2 < Z(t)} / \sigma^2 < Y(t) >$$
$$\hat{a}_0 = \mu < Z(t) > -\hat{a}_1 \mu < Y(t) >$$

Calibration Method

- Two tests with three outputs to check sensor data.
- Thresholds defined where alarm signalled.
- Consistent signalling less likely from natural variability.
- \circ If >1 outputs with consistent alarms, the calibration used.

7

Solution to the Problem of Calibration of Low-Cost Air Quality Measurement Sensors in Networks

Georgia Miskell,^{†,‡} Jennifer A. Salmond,[‡] and David E. Williams**^{†,§}

[†]School of Chemical Sciences, University of Auckland, Auckland 1010, New Zealand
[‡]School of Environment, University of Auckland, Auckland 1010, New Zealand
[§]MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand

Environmental Science & Technology

Article

pubs.acs.org/est

Data Verification Tools for Minimizing Management Costs of Dense Air-Quality Monitoring Networks

Georgia Miskell,^{†,‡} Jennifer Salmond,[†] Maryam Alavi-Shoshtari,^{‡,§} Mark Bart,^{||} Bruce Ainslie,[⊥] Stuart Grange,^{†,‡} Ian G. McKendry,[#] Geoff S. Henshaw,^{∇} and David E. Williams^{*,‡}

¹Meteorological Services of Canada, Environment Canada, Vancouver V1V 1V7, Canada

[#]Department of Geography, The University of British Columbia, Vancouver V6T 1ZU, Canada

^VAeroqual Ltd, 109 Valley Road, Mt Eden, Auckland 1024, New Zealand

Miskell et al. ACS Sens. 2018, 3, 832-843 Miskell et al. Env. Sci. & Technol. 2016, 50(2), 835-846

Data

Data from two networks measuring ozone (ppb) by gassensitive semiconducting sensors manufactured by Aeroqual.

Network 1: Vancouver, Canada

Network 2: Los Angeles, California

Vancouver

1-hour data.

Vancouver

1-hour data.

11

Vancouver

Vancouver

Sensor land	Proxy land use		
use	Urban	Suburban	Rural
Urban	1	0.76	0.68
Suburban	1.23	1	0.87
Rural	1.28	1.03	1

Co-located Sites

Land use adjustments improved the proxy when it was a poor fit.

Los Angeles

- $_{\odot}\,$ Network of ~ 100 sensor devices.
- \circ Remote calibration improved accuracy of data (O₃).

Los Angeles

- Field-calibrated sensors moved to non-co-located sensor devices calibrated by the remote method.
- Time-series showed good agreement between the two devices.

Summary

Remote calibration:

- Cost-effective.
- Check and update any time.
- Do not require regular access to sites.
- Shown to work for ozone sensor devices in two networks.
- Finding appropriate proxies a challenge.
- $_{\odot}\,$ Unknown level of uncertainty added to the measurement.

Thanks for listening!

georgia.miskell@auckland.ac.nz

MINISTRY OF BUSINESS, INNOVATION & EMPLOYMENT HIKINA WHAKATUTUKI

CallaghanInnovation Oeroqual³⁸

Thanks to Andrea Polidori, Vasileios Papapostolou, Brandon Feenstra & Berj Der Boghossian from South Coast Air Quality Management District, and to Ken Reid & Julie Saxton from Metro Vancouver for regulatory data and access to sites.

Thanks to the many individuals and facilities who generously hosted instruments!