Filling in the air quality data gap and enabling air quality management in LMICs using low-cost sensors

Assessment of Traffic-derived Air Pollutants by Smart Sensors: Comparison of Pollutants at Street Levels

Mahesh Senarathna*, Sajith Priyankara, Rohan Weerasooriya, Gayan Bowatte

Postgraduate Institute of Science University of Peradentya

Background

- In cities and towns across the globe, Traffic-Related Air Pollution (TRAP) is the major source of air pollution.
- Change in traffic flow in a city can cause increased, decreased, or no change in overall air pollution.
- Most of the studies evaluating air pollution after introducing new traffic plans into a city measured only ambient air pollution.
- However, they did not measure air pollution on different street segments.

Background

- The standard air pollution monitors are expensive.
- Developing countries like Sri Lanka do not have the funds to establish the required number of monitoring stations to measure air pollution.
- The developing small sensor technology is a new area where air pollution measurements can be done at a low cost.
- These sensors have benefits over standard monitoring stations.

- This study aimed to monitor and evaluate traffic-related air pollution on the roads of Kandy city, Sri Lanka, before and during a new traffic plan.
- To the best of our knowledge, there has been no traffic-related mobile air pollution monitoring study published in Sri Lanka to date.

Study Area

• We measured air pollution on the main roads of the city, including the three main traffic access routes to the Kandy Municipal area (total area of 28.53 Km²)

Fig 1. Study Area; Study area was in and around the Kandy city roads. A- via Peradeniya, B – via Katugastota, and C- via Tennekumbura: three main traffic access to Kandy city

Methods

Fig 3. Sniffer 4D sensor mounted on a police traffic motorcycle

- In this study, we used a small law-cost mobile air quality measuring device called"Sniffer4D".
- Data were collected using a "Sniffer4D" device mounted to a traffic police motorbike before and during the one-way traffic plan, along the major roads in the city of Kandy, in March 2019.

Methods

- The motorcycle's speed was maintained at less than 20 km per hour at all times.
- When moving along the roads, sniffer4D provides a geographic location (longitude, latitude, and elevation), temperature, humidity, PM2.5, and NO₂ concentration at each point in every second.
- Monitoring was conducted at regular time intervals
 - Morning (7.00 am 10.00 am)
 - Mid-day (10.00 am 1.00 pm)
 - Afternoon (1.00 pm 4.00 pm)
 - Evening (4.00 pm 7.00 pm).

Methods

Fig 4. Categorization of road segments in Kandy city

Road Segment ID	Details of the road segment		
1	Getambe Junction- Mulgampola Junction (Old Peradeniya Road)		
2	Getambe Junction - Mulgampola Junction (New Kandy Road)		
3	Mulgampola Junction - Kandy Railway Station		
4	Mulgampola Junction – Girls' High School		
5	Girls' High School – Kandy Railway Station		
6	Hantana Road		
7	Baladaksha Mawatha + Keppetipola Road		
8	Kandy Railway Station - Clock Tower		
9	Bogambara Road		
10	Clock Tower - Kandy Police Station		
11	Lake Round - EL Senanayake Children's Park		
12	EL Senanayake Children's Park - Dalada Maligawa		
13	Dalada Maligawa – Lake Round		
14	Kandy Jaffna Road – Welikanda Railway Station		
15	Kandy Police Station – Welikanda Railway Station		
16	Welikanda Railway Station – St. Anthony's Boys College		
17	St. Anthony's Boys College – Katugasthota		

- PM2.5 concentrations during the New Traffic Plan (NTP) means were statistically significantly higher than the before NTP (p=0.0067 < 0.05).
- Mean NO₂ concentrations were not significantly different before (109.87 ppb) and during NTP (104.73 ppb).

 The PM_{2.5} concentrations were moderately correlated with NO₂ and positively correlated with PM10, before and during the NTP.

Fig 6. Average NO₂ and PM_{2.5} levels in different street segments before (A) and during (B), the new traffic plan)

• During the new traffic plan, the average $PM_{2.5}$ was the highest in the morning (131.24 $\mu g m^{-3}$), followed by evening (111.67 $\mu g m^{-3}$), afternoon (110.27 $\mu g m^{-3}$) and midday (106.28 $\mu g m^{-3}$).

Fig 7. Average PM_{2.5} variations in each time period during the new traffic plan

		Highest average concentration at(µg/m³))	Lowest average Concentration at(µg/m ³))
Before NTP	PM2.5	buffer ID 5 (170.52)	buffer ID 15 (40.06)
	NO ₂	buffer ID 5 (195.88)	buffer ID 2 (65.42)
During NTP	PM2.5	buffer ID 5 (194.47)	buffer ID 6 (61.26)
	NO ₂	buffer ID 5 (226.69)	buffer ID 15 (32.22)

Conclusion

- Extensive spatial coverage of air quality monitoring by mobile sensor networks enables to determine the level of population air pollution exposure and considers that in traffic planning.
- A good traffic plan can reduce the PM_{2.5} level in the city. The recent change in the Kandy city traffic plan might have caused an increase in PM_{2.5} levels.
- Proper development of road infrastructure with compatible traffic plans could reduce air pollution in urban areas.

Thank you