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The need to analyze data from air sensors

e As more sensors are deployed there’s an increased need to
manage and understand the data

e \We'll present a few methods for managing the data

e These are under development

e \We'd like to hear how they can be improved, combined and
coordinated



The Key ldeas

For characterization of neighborhood scale air
guality extensive daily street level surveys have
shown that we need a spatial resolution of at
least 0.5 km.

Temporal resolution is just as critical as spatial
resolution, and low latency is helpful.

Given the costs involved using low cost sensors
IS helpful.

With low cost sensors calibration is a
particularly critical issue.

We also want to have size resolved

observations into the pollen and mold size range. Routes of mobile sensors near the
University of Texas at Dallas
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Sizes of various particles
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Fine Temporal Resolution is Advantageous

Site: (35 042705, -85. 305654) on 2016/08/23 Log1 0 of Counts

e \We use techniques developed over a
decade for satellite validation to dainboibia L) il
provide pre-deployment and real- | ” Hmwﬂ’ ‘l'".
time calibration that utilizes: 3 | ’w

o Machine Learning. |

o The Probability Distribution _ o R 1 (i
Functions (PDFs) of all observations RN G
made over various temporal &
spatial scales.

o Measuring the fu” Size distribution up ' :00422:000:0002:0004:0006:000:0010:0012:0014:00 16:00 18:00
to 40 microns is helpful to also Time
identify airborne mold and pollen A Full Diurnal Cycle at 10s Resolution




Cascade of accuracies

Colocation
We can use different levels of accuracy. For particulates:
1. EPA certified instrument: $25,000-$50,000
(primary)
2. Medium accuracy: $2,000-$5,000
(secondary)
3. Inexpensive but useful: $200-$500
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Pre-deployment Calibration

A batch of ten sensors are placed in a calibration
chamber for several days together with an EPA
certified reference instrument.

The full aerosol size distribution is collected by
the reference instrument and by the lower cost
sensors, along with the temperature, pressure
and humidity.

This is then used together with machine learning
to provide a calibration for PM;, PM, c, PMy,,
Alveolic, Inhalable and Thoracic estimates.
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Example Machine Learning Calibration

Calibration is greatly improved when it is multivariate, nonlinear and parametric.
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Representativeness

e When performing chemical data assimilation the
observational, representativeness, and theoretical
uncertainties have very different characteristics.

We routinely accurately characterize the
representativeness uncertainty by studying the
probability distribution function (PDF) of observations.
The average deviation has been used as a measure of
the width of the PDF and of the variability
(representativeness uncertainty).

The representativeness uncertainty can be markedly
different from the observational uncertainty and clearly

delineates mixing barriers.

Source: doi:10.1016/j.atmoscilet.2003.11.002
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Required Spatial Scale Characterization With Variograms
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Visualization of Local Level Analytics (demonstration)

e Comparing levels of pollution in neighborhoods adjacent to
freeways divided by natural & artificial buffers (e.g.,
vegetation barriers, soundwalls, etc.)

e Smaller spatial scale analytics

e View high volume of data in one visualization

e |Interactive ingest as end users slice and dice through
various aspects of the data (e.g., over time, across space,
speed, statistical distribution, conditional distribution)
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Advantages of the data analysis methods

Method Advantages

Representativeness Quantify the variability at a given
location and time

Cascade of accuracies Address spatial and temporal
variability using low cost sensors
and tie them to reference
monitors

Visualization of data in fine scale | See high volume of data in one
graphic
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Next Steps

Improve the protocol for calibrating inexpensive sensors to
include multiple variables, nonlinearity and parametrics.
Characterize the temporal scale using similar methods.
Use an open portal to store and display data from over 55
countries and over 8,000 sites.

o Make this an open platform and protocol.

Help communities make the best use of low cost sensor data.
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Extra Slides
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Complimented by Using Aerial Vehicle Measurements

PDF of PM2.5 Abundance for November 18, 2014

Flight on Nov 18, 2014 clear skies Flight on Dec 04, 2014 hazy/overcast
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(a) Common Fire Area
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Representativeness

e When performing chemical data assimilation the

observational, representativeness, and theoretical
uncertainties have very different characteristics.

We routinely accurately characterize the representativeness
uncertainty by studying the probability distribution function
(PDF) of observations. The average deviation has been used
as a measure of the width of the PDF and of the variability
(representativeness uncertainty).

The representativeness uncertainty can be markedly

different from the observational uncertainty and clearly
delineatec mivinn harriere
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Decreased Lune Function < 10 um

Cardiovascular Disease < 0.1 um Skin & Eve Discase < 2.5 um
Tumors < | um 0.1 mm | mm
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Tvoes of Dust Tvoes of biolorical Material

Gas Molecules Trvoes of Particulates
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Fine Particulate Matter Size Comparison
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Human hair about 70um wide)

MM = micrometer

Grain of sand (about 50um wide)

HUMAN HAIR

50-70um
(microns) in diameter

90 um (microns) in diameter
FINE BEACH SAND

PM‘O (less than 10um wide)

€PM2s

Combustion particles, organic
compounds, metals, elc.
<2.5um (microns) in ciameter

Dust, pollen, mold, etc.

Image courtesy of the U.S. EPA

PN‘2 5 (less than 2.5um wide)



