Personal air pollution exposures in NYC bicycle commuters: Evidence from the Biking & Breathing study

Darby Jack, Nicholas Pantaleo, Cara Smith, Qiang Yang, Jonathan Thornburg, Patrick Kinney, Steven Chillrud

ASIC September 2018

Motivating questions

- Can we reliably estimate potentially inhaled dose "in the wild"?
 - Yes we can, using readily available hardware.
- Does measuring dose change our understanding of the risk incurred during cycling?
 - Yes it does. A dose metric reveals that for cyclists in our study, the majority of their 24 hr black carbon dose occurs during cycling.
- How much health risk are cyclists taking on?
 - Too early to say. We are still gathering the data to assess this, but pilot evidence suggests that cycling exposures predict higher blood pressure.
- What can cyclists and urban planners do to minimize risk?

- Route cyclists away from vehicle emissions!

Background and study design

Study design

- In partnership with WNYC, recruit bike commuters who ride 45±15 minutes each way.
- Ask them to carry out six 24 -hour monitoring sessions bracketing at least one commute ride.
- Epi hypothesis: short duration air pollution dose increase postexposure BP and decrease heart rate variability.
- (exploit both within- and betweenparticipant variation)

COLUMBIA | MAILMAN SCHOOL

wnyc.org/streets - ongoing partnership with WNYC for recruitment and outreach

¥ f ⊚ t

COLUMBIA | MAILMAN SCHOOL

Environmental Sensors

MicroAeth Black Carbon

Smart Phone App for GPS

Physiological Sensors

Hexoskin biometric shirt:

- Minute ventilation (via Dual band RIP sensors)
- ECG

ABPM for Blood pressure

MicroPEM PM2.5

What can hyper-local AP data offer?

10 percentile

median

mean

90 percentile

N (# of points in each 100m x 100m grid)

Study status

- NIH R21/R33 "Phased innovation" grant - 2 year validation phase followed by 3 year implementation phase
- Validation phase: lab testing + deployment in 45 participants (all data shown today from this phase)
- We advanced to the implementation phase in March of 2017
- Target enrollment for Phase II: ~150 (~90 completed so far)

Does measuring dose change our understanding of the risk incurred during cycling?

Questionnaire \rightarrow Central site \rightarrow Residential \rightarrow Modeled Personal \rightarrow Measured Personal \rightarrow Measured Potential Inhaled Dose

- By definition: inhaled mass of particulate matter (mass concentration $\times V_F$)
- For fine particles, it's a first approximation of the mass deposited in the lung
- "potential" \leftarrow other factors affect deposition
- Requires estimates of tidal volume (liters of air per breath) and respiration rate (breaths per minute), along with high frequency pollution data
- Minute ventilation acts a multiplier on concentrations

Minute ventilation

Hexoskin Shirt

- Hexoskin shirt measures all three proxies for minute ventilation → model missing data
 - Dual band RIP sensors (RR, Tidal Volume) RIP
 Respiratory Industance Plathumography
 - = Respiratory Inductance Plethysmography
 - Heart rate ECG sensor (and HRV)
 - 3 axis accelerometry
- Lab validation on 17 participants compared to gold standard (reported on previously)

COLUMBIA MAILMAN SCHOOL

sleep

3rd Q

64

15

7.0

Max

170

170

96

Biking period only accounts for ~ 7% of 24-hr period, but 55% of total 24-hr black carbon dose and 35% of total 24-hr $PM_{2.5}$ dose

COLUMBIA | MAILMAN SCHOOL

Minute Ventilation affects exposure ranking during biking <u>and</u> non-biking <u>periods</u>

EPA reference value captures the central tendency of our data, but masks a lot of variation.

How much health risk are cyclists taking on?

We know surprisingly little about the health effects of short duration exposures

- Time series studies pollution peaks trigger increases in morbidity & mortality
- Chamber studies (human and animal) exposure affects HRV and BP, but exposures are much higher (10x)
- Few studies examining the acute effects of routine exposures

COLUMBIA MAILMAN SCHOOL

COLUMBIA | MAILMAN SCHOOL

In most settings, however, the exercise-related benefits of cycling outweigh the risks...

The greatest health risk associated with cycling is not doing it!

(https://ig.ft.com/sites/urban-cycling/)

What can cyclists and urban planners do to minimize risk?

世 COLUMBIA | MAILMAN SCHOOL UNIVERSITY | of PUBLIC HEALTH

40% of the total biking routes in NYC are along or within 50 m of a designated truck route.

55% of the distance that our volunteers rode are along or within 50 meters of a designated truck route.

And it matters: BC exposures are higher close to truck routes

Concluding thoughts

- The data quality criteria demanded by health research is generally quite high, but varies with study design.
 To make comparisons across individuals (as in a cohort study), quality requirements are particularly high.
- Estimating minute ventilation is feasible and impacts exposure estimates even beyond physical activity periods.
- Health researchers are just beginning to explore the research potential of high frequency personal air samplers – lots to learn!

Acknowledgements

Co Pl: Steve Chillrud, Lamont-Doherty Earth Observatory

Funding: NIEHS (R21/R33 ES 024734, P30 ES 009089)

Collaborators: Pat Kinney (BU), Aimee Layton (Columbia), Nick Pantaleo (NYU), Daichi Shimbo(Columbia), Richard Sloan (Columbia), Cara Smith (Columbia), Jon Thornburg (RTI), Qiang Yang (Columbia).

WNYC (Fred Mogul)

www.wnyc.org/streets

Our amazing study participants who tolerate way too many sensors.

