Contrasting Pattern of PM_{2.5} Concentrations in Urban-Rural Pair Sensors from Nepal

Rejina Maskey Byanju, PhD*

Ramesh P Shapkota, Hasana Shrestha, Enna Mool, Prakash V. Bhave and Michael H. Bergin

*Professor

Central Department of Environmental Science Tribhuvan University, Kirtipur

Presentation Outline

- Introduction Context
- Objectives
- Materials and Methods:
 - Sampling Sites
 - BlueSky Air Quality Monitor
- Results
- Conclusions

Introduction

Area: 147,516 km²

Population: 29.19 million (2021) CBS-Nepal

<u>Capital</u>: <u>Kathmandu</u> (population density= 5108

persons/km², Terai = 461 persons/km²)

Urbanization rate: 6.4%

Nepal among countries with *highest* PM_{2.5} exposure

Nepal is ranked as a second most polluted country in the world in terms of $PM_{2.5}$ concentration (i.e., annual average of $83.1\,\mu\text{g/m}^3$) for the year 2019 (HEI, 2020).

Introduction contd...

Figure: Time series of diurnal average of PM_{2.5} (µg m⁻³) concentration at different places in Nepal

18% of pollutants from the low laying plain region advected to Kathmandu as background pollution during 2015. Mahapatra et al. (2020)

Highest emissions flux occurred in the **Terai region (90.7%)** Das et al. (2020)

Episodes of transboundary air pollution in the central Himalayas

Presentation · February 2020

Air Quality, Atmosphere & Health

https://doi.org/10.1007/s11869-020-00799-6

ResearchGate

Atmospheric Pollution Research 13 (2022) 101270

ELSEVIER

Contents lists available at ScienceDirect

Atmospheric Pollution Research

journal homepage: www.elsevier.com/locate/apr

An episode of transboundary air pollution in the central Hin agricultural residue burning season in North India

Atmos. Chem. Phys., 17, 11041–11063, 2017 https://doi.org/10.5194/acp-17-11041-2017 © Author(s) 2017. This work is distributed under the Creative Commons Attribution 3.0 License.

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/343391014

Status of Air Pollution and its impacts in Nepal: A Review Study

•						
CITATIONS		READS	READS			
0		113				
2 autho	2 authors:					
0	Bimala Devi Devkota		Pawan Kumar Neupane			
	Nepal Academy of Science and Technology		Nepal Academy of Science and Technology, NAST, Nepal			
	13 PUBLICATIONS 50 CITATIONS		10 PUBLICATIONS 59 CITATIONS			

Mitigating the impacts of air pollutants in Nepal and climate co-benefits: a scenario-based approach

Amrit M. Nakarmi^{1,2} • Bikash Sharma³ • Utsav S. Rajbhandari¹ • Anita Prajapati¹ • Christopher S. Malley⁴ • Johan C. I. Kuylenstierna⁴ • Harry W. Vallack⁴ • Daven K. Henze⁵ • Arnico Panday³

Pre-monsoon air quality over Lumbini, a w the Himalayan foothills

Received: 8 May 2018 / Accepted: 17 January 2020 © The Author(s) 2020

Dipesh Rupakheti^{1,2}, Bhupesh Adhikary³, Puppala Siva Praveen³, Maheswar Rupakheti^{4,5}, Shichang Kang^{2,6,7},
Khadak Singh Mahata⁴, Manish Naja⁸, Qianggong Zhang^{1,7}, Agaiga Kumap Panday³, and Mark Ge Lawgenca⁴ Sensors Int.
3/7/2023

Conf. 2022

5

Introduction contd....

Source: IQAir

A coordinated South Asian effort is necessary to better understand the processes governing transboundary air pollution and severity of the regional air pollution (ICIMOD, 2019)

South Asia Project- Full Team Meeting -Air Sensors Int.

3/7/2023

 Air quality management in the Terai is encumbered by a lack of ambient measurements and significant uncertainty in the local vs. transboundary pollutant contributions.

 The Government of Nepal is expanding its air pollution monitoring network to the Terai but faces technological limitations to keep their expensive equipment calibrated and fully operational.

DoEnv Monitoring Data

Regulatory-grade monitors (e.g. GRIMM EDM) are a challenge to maintain.

SN	Station Name	2016	2017	2018	2019	2020
1	Pulchowk					
2	Ratnapark					
3	Bhaisipati					
4	Kirtipur					
5	Shankapark					
6	Bhaktapur					
7	Dhulikhel					
8	Sauraha					
9	DHM, Pokhara					
10	PU Pokhara					
11	Lumbini					
12	Nepalgunj					
13	Simara					
14	Dang					
15	Phohara Durbar					
16	US Embassy					
17	Dhankuta					

Percent of monthly missing data for PM_{2.5} 3/7/2023

50-75%

No data

Objectives

- •To determine the difference in PM_{2.5} concentrations across the Terai which includes urban sites that are each paired with a nearby rural sites.
- Assess transboundary contributions of PM_{2.5} concentrations in the Terai.

Materials and Methods

BlueSky Air Quality Monitor

- Real-time Particulate Matter (PM) sensor that provides accurate measurements of PM_{2.5} mass concentration, temperature and humidity
- Can be used at altitudes up to 3000 m (10,000 feet)
- Designed to be used outdoors in highly polluted areas where particulate concentrations can be as high 1000 ug/m³
- Helpful for air quality model evaluation (e.g., WRF-Chem or CMAQ)

Sampling Sites 12 urban-rural pairs in Terai - transboundary Sampling Duration: Nov 1 2021-Feb 1 2022 (Urban) Nov 1 2021-Jan 2 2022 (Rural) April 2022- two weeks Mahendra. Mahendranag ar (Urban) Mahendranag vani ft ar (Rural) Shey H13 Phoksundo Annapurna National Park Conservation शे-फोक्सुन्डो Area Birgunj अन्नपुणे निकुञ संरक्षण (Urban) Lakhimpur लखीमपुर-खीरी Birgunj ndu (Rural) H01 SH H01 Hardoi हरदोई Gonda Darje गोण्डा Lucknow Faizabad Gorakhpur लखनऊ Motihari फैजाबाद गोरखपुर मोतिहारी Kanpur H01 कानपुर ⊰iratnagar Sultanpur Deoria सुल्तानपुर Muzaffarpur ull Team Meeting -Air Sensors Int.

3/7/2023

Results

Birgunj

Fig: Hourly average PM_{2.5} at (a) Urban and (b) Rural Birgunj

Results

Fig: Diurnal variation of PM_{2.5} at (a) Urban and (b) Rural Birgunj

Note: Sharp rise and fall in PM concentration during morning and evening hours is observed in the rural area.

Birgunj

Mahendranagar

PM_{2.5} concentrations at various sites urban and rural Birgunj and Mahendranagar

Conclusions

- Urban sites were prone to higher levels PM_{2.5} exposures, compared to rural sites.
- Higher noncompliance to NAAQS at both Urban and Rural measurements suggests the possible transboundary pollution sources
- Research ongoing: Additional pairs of BlueSky sensors deployed in the Terai will show the trend and pattern of PM _{2.5} and also the status of transboundary pollution.
- Efforts needed in future to reduce concentrations of PM_{2.5} would be discoursed by findings of this research.

THANK YOU

Acknowledgements

Project-"Building Capacity to Improve Air Quality in South Asia: Reducing PM_{2.5} Through Low-Cost Sensor Network Driven Policy Decisions"

