Multi-pollutant and multi-sensor strategies for understanding the sources and spatial variation of VOCs in an urban oil drilling setting

Caroline Frischmon

May 2, 2024

Las Cienegas oil field in Los Angeles, CA

Health impacts related to oil extraction:

- Cancer
- Liver damage
- Respiratory and neurological symptoms
- Immunodeficiency

Johnston et. al., 2019.

Investigating the local air quality impacts of oil extraction here requires an ability to distinguish sources

We deployed a low-cost air monitoring network near sites of interest

Q Pod data analyzed today

• Pods deployed but not analyzed today

Multi-sensor and multi-pollutant approach to understanding VOC sources and impacts

VOC sensors: Four metal oxide sensors

- Figaro TGS2600
- 2 Figaro TGS2602, at different temperatures¹
- Figaro TGS2611

Other pollutants measured: Methane, carbon monoxide, nitrogen oxides, particulate matter, carbon dioxide, ozone

Two-step calibration process

Harmonization

Colocation

Okorn, K., Hannigan, M. Atmosphere **2021**, 12, 645.

Two-step calibration process

Harmonization

Colocation

Okorn, K., Hannigan, M. Atmosphere **2021**, 12, 645.

Two-step calibration process

Okorn, K., Hannigan, M. Atmosphere **2021**, 12, 645.

Harmonization stats

• Linear model for each sensor, with an added Elapsed Time feature

R² range for all sensors:
0.79 - 1

Colocation to SCAQMD TVOC measurements

- FTIR multi-pollutant optical analyzer
- Oct. 2023 Mar. 2024, 5-minute
 - Only measurements above the detection limit (15 ppb) are included in the calibration model (n = 29,000)
- Gradient boosting machine learning model worked best to capture peaks in the data
 - Model includes all four Figaro sensors, temperature, and humidity

	Data set	R ²	RMSE	MBE
	Training data	0.67	60.2	0.05
Iniversity of Colorado Boulder	Testing data (20%)	0.63	50.3	0.64

Decreased TVOC concentrations:

- Closer the active site compared to further away
- Near the idle compared to deconstructed site

Investigating why:

- Methane levels are higher further from the active site; CO levels are not.
 - Elevated TVOC might still be associated with oil and gas activity.

We will look into how wind plays a role in TVOC dispersion

• Regional prevailing winds are from west

What's next

- Explore wind impacts
- Collect more pod data
 - Improve colocation models, especially for estimating peak values
 - Investigate longer term trends in VOC spatial variability
- Tie the air quality data directly to local health impacts research

Thank you!

Collaborators:

RCP: Brittany Lu-Jones, Richard Parks

USC: Jill Johnston, Sandra Osvelia Serrano Medina, Venezia Ramirez, Jessica Santos, Alexander Silverman

Occidental College: Fransisca Castro, Bhavna Shamasunder

CU Boulder: Michael Hannigan

Reference instrumentation: SCAQMD: Ethan Balagopalan, Jack Porter **CDPHE**: Zachary Finewax, Erick Mattson

Funding:

NIEHS 1R01ES033478

Mobilize | Innovate | Connect | Educate

Environmental Health Centers

National Institute of Environmental Health Sciences

Roofing repair dates removed

