

Practical challenges of using PurpleAir-II-SD Low-cost sensors for Air Quality Monitoring in sub-Saharan Africa

Air Sensors International Conference - 11 May 2022

Dr Babatunde Awokola, PhD student (Babatunde.Awokola@lshtm.ac.uk)

The Gambia...Smiling Coast of Africa

Conflict of Interest

I have no disclosures to make

I do not have any conflict of interest

MRC Unit The Gambia at the London School of Hygiene & Tropical Medicine

Background

The future of cit Africa and other sensor networks.

As attractive as this prospect is, the deployment of the latter is froth with challenges that ulletaffect the overall aim of continuous air pollutant measurement.

We report the practical challenges we experienced during the pilot project "Measuring Air" ulletQuality in Africa for Advocacy" (MA3) in seven African countries.

The MA3 Consortium

- Initiative of the MA3 Consortium (ACCA, LSTM, Lancaster University, University of Stirling)
- Exposure scientists from nine different countries in sub-Saharan Africa
- Sole goal is to organize a network of low-cost sensors for continuous Ambient PM_{2.5} measurement in urban cities in SSA
- Launched in May 2019 at Pan African Thoracic Society MECOR course in Dar Es Salaam, Tanzania. Training was facilitated by Dr Gabriel Okello, Prof Sean Semple & myself.

MA3 Participating Countries

Ambient $PM_{2.5}$ to be collected by 15 Exposure Scientists from 9 countries trained in air quality monitoring under the measuring air quality for advocacy initiative (MA3).

- PurpleAir-II-SD devices were given to 15 participants at an AQM workshop. Thirteen exposure scientists from seven countries (Gambia, Kenya, Uganda, Benin Republic, Burkina Faso, Cameroon and Nigeria) eventually installed the instruments and participated in pilot data collection throughout July 2019.
- The ambient PM_{2.5} data was downloaded from the SD memory cards weekly, zipped and passworded and sent via email to the PI who then cleaned and analysed the data
- A log of challenges encountered was kept by all exposure scientists, zipped and sent to the Principal Investigator weekly alongside the site datasets.
- Coordination and remote support provided via a WhatsApp® platform

AQM_MA3 group

Group · 17 participants

Add

Search

Video

←

Audio

Methodology- PurpleAir Installation Site Agreements

- Purple Air-II-SD device and one 20,000 mAh long-lasting portable Anker® power bank (Anker Innovations, Changsha, China).
- Standard operating procedures for installing and mounting the Purple Air-II-SD device at each site : Device is
 - (i) Sited away from obstructions e.g. walls, big trees etc;
 - (ii) A good distance away from a road with heavy traffic i.e., minimum 100 m;
 - (iii) Placed at two meters from the ground level for uniformity and ease of data comparability;
 - (iv) Sited away from non-traffic particulate matter sources such as grills, generators, incinerators, AC vents etc.
- NB: Post installation pictures were taken and sent to the group. MRC Unit The Gambia at the London School of Hygiene & Tropical Medicine

Purple Air-II-SD : ubiquitous tool. Undergone validation

 Independent evaluation data shows very good agreement (R²>0.95) with gold standard instruments

Does the Purple Air accurately measure high concentrations of smoke?

Results- Data recovery from the sensors at the MA3 sites

Country*	Town & City	Number of Records logged (n)	PA° time periods (N)	Data recovery rates (%)	Daily period average (µg/m³)
The Gambia	Fajara, Kombo	20,636	22,320	94.7%	15.6
Burkina Faso	Balkuy, Ouagadougou	21,142	22,320	94.7%	19.4
Benin Republic	Akpakpa, Cotonou	30,799	33,480	92.0%	22.1
Nigeria	Abakaliki Rd, Enugu	32,999	33,480	98.6%	28.8
Nigeria	Trans-Ekulu, Enugu	31,139	33,480	93.0%	30.3
Nigeria	Goshen, Enugu	35,322	33,480	105.5%	22.1
Nigeria	New Haven, Enugu	31,241	33,480	93.3%	30.3
Nigeria	Awka, Anambra	31,500	33,480	94.1%	33.0
Kenya	Ngong Rd., Nairobi	22,320	22,320	100.0%	38.8
Nigeria	Nnewi, Anambra	21,078	22,320	94.4%	52.3
Uganda	Ntinda, Kampala	21,312	22,320	95.5%	91.1
Nigeria	Bariga, Lagos	24,148#	33,480	72.1%	56.3

MRC Unit The Gambia at the London School of Hygiene & Tropical Medicine

Results- Data recovery from the sensors at the MA3 sites

- Data recovery ranged from 72.1% (Bariga-Lagos-Nigeria) to 100% (Nairobi, Kenya);
- The overall median recovery rate was 94%.
- All sites recorded daily PM_{2.5} averages higher than 15 µg/m³ (WHO recommended threshold);

Results- Practical Challenges	Issues	Issues Specific Characteristics	
rtesuits- i raotical challenges			n (%)
encountered	Power Issues	- No power problems reported	5 (41.7%)
		- Irregular electricity supply	4 (33.3%)
		- Additional Power bank needed	1 (8.3%)
 Practical challenges experienced in the process of use of the Purple Air-II-SD 		- Use of electricity generators	2 (16.7%)
sensors were	Device Set-up	- No set-up issues reported	6 (50%)
 Power and power pack outages, 		 Finding suitable location for 	
Device set-up issues		device set-up	2 (16.7%)
		- Incurring extra cost for assisted	
• SD memory card issues,		device set-up	2 (16.7%)
 Internet connectivity problems and 		- Keeping device safe from theft,	
 Sensor hardware maintenance 		children, etc.	1 (8.3%)
concerns.		 Connecting to Wifi 	1 (8.3%)
NID: Only two sites sould	Memory Card	– No SD memory card problems	10 (83.3%)
• NB. Only two sites could		– Problems with removal and re-	
sustain wi-fi access for one month		insertion of SD card	2 (16.7%)
	Data	– No data downloaded problems	
	download	reported	8 (66.7%)
		- Extracting data from wifi	1 (8.3%)
MRC Unit The Gambia at the London School of Hygiene & Tropical Medicine		 Card reader issues 	3 (25%)

Conclusions

- Main challenges identified were power, device set-up issues, internet connectivity & SD memory card problems.
- These challenges were overcome through creative solutions;
- PM_{2.5} longitudinal measurement can be reasonably satisfactorily executed in sub-Saharan African countries using the Purple Air-II-SD device.

Acknowledgements

🚨 🖾 UNIVERSITY OF CAMBRIDGE Prof. Kevin Mortimer Dr. Gabriel Okello

Lancaster University

Dr. Chris Jewell Dr. Olatunji Johnson

Prof Graham Devereux

Ass. Prof Sean Semple Dr. Ruaraidh Dobson

ASIC

Air Sensors Int. Conf.

CAMS-Net

Dr. Annette Erhart

African Centre for Clean Air MA3 Consortium & Associates

Endurance Awokola

Air sensing to action in the African context: design and deployment of a community-driven digital air quality sensing network for African cities. -Engineer Bainomugisha, AirQo/Makerere University

Session Q&A Discussion

Please submit your questions for the session speakers through Whova – on your mobile or desktop device.

Make sure to note WHOM your question should be addressed to.

Thank you for joining Part 1 of the session!

Part 2 will begin momentarily.

Session 5A Part 2 Speakers:

Dan Westervelt, CAMS-Net Michael Johnson, Berkeley Air Priyanka deSouza, University of Colorado Denver Michael R Giordano, AfriqAir

