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PurpleAir PA-II Network & the STAR 
Grant
• PurpleAir PA-II sensors offer open-access data for PM
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• Widely used sensor, estimated that more than 10,000 have 
been deployed across the US 

• In 2016, U.S. EPA funded Science to Achieve Results (STAR) 
Project was undertaken to “Engage, Educate, and Empower 
California Communities on the Use and Applications of 
Low-Cost Air Monitoring Sensors”

• Large scale (included 14 different communities)

• Multi-year deployment (some sensors operating > three years)

• ~ 300 PA-II sensors were deployed 

• dataset leveraged for this analysis
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A Need for 
Calibration 
• Previous analysis revealed dramatic 

variability in sensor performance, 
seemingly driven by seasonal 
trends and PM-type, as opposed to 
a consistent decline or drift

• Plots depict monthly aggregate data 
from 17 sensors co-located at a 
regulatory monitoring site, 
collected over three years

   (from Collier-Oxandale et al., 2021)
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Typical Approaches to Calibration 

• None of these approaches are well-suited to be applied to large-scale, long-term sensor networks 
• Newer approaches include global correction equations, remote calibration, and calibration using mobile platforms
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Types Overview Pros Cons

Factory 
Calibration 

High throughput batch calibrations, resulting in 
correction factors (often linear)

All sensors in a batch 
calibrated under the same 
conditions

Occurs once by manufacturer

Laboratory 
Calibration 

Calibration by end users in chamber systems 
designed to mimic real world conditions

Relatively quick, replicable, 
sensors can be calibrated in 
batches 

May not fully capture the field 
conditions (e.g., dynamic 
changes in environment 
conditions or the background 
pollutant mixtures) 

Field 
Calibration 

Sensors are co-located with high quality reference 
instrumentation for a defined period, calibration 
models typically developed through linear 
regression, multiple linear regression, or machine 
learning techniques using the co-located dataset

Able to account for typical 
field conditions 
(environmental conditions 
and background pollutant 
mixtures)

Time and labor intensive, will 
likely need to be repeated at 
regular intervals or before and 
after a field deployment 



The “MOMA” Approach

MOMA, PA-II Pilot (procedure) 
• Two approaches were used – applying MOMA on a monthly basis and driven by a drift detection algorithm that tracks 

the difference between the sensor data and the proxy site 
• Calibration periods were identified where the data was expected to be most similar between the sensor and the proxy 

site, based on meteorological conditions and the similarity of pollutant trends between the sensor and proxy data
• The MOMA algorithm was then used to determine updated gains and offsets, which were applied 

to the PA-II sensor data 
 Key publications detailing the development and evaluation of the MOMA Approach:

• Miskell, G., et al., (2018). Solution to the problem of calibration of low-cost air quality measurement sensors in networks. ACS sensors, 3(4), 832-843.
• Miskell, G., et al., (2019). Reliable data from low cost ozone sensors in a hierarchical network. Atmospheric Environment, 214, 116870.
• Weissert, L., et al., (2020). Low-cost sensor networks and land-use regression: Interpolating nitrogen dioxide concentration at high temporal and spatial resolution in 

Southern California. Atmospheric Environment, 223, 117287.
• Weissert, L., et al., (2020). Hierarchical network design for nitrogen dioxide measurement in urban environments. Atmospheric Environment, 228, 117428.
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Proxy Sensor 

Sensor 

MOMA Assumption: given a suitable proxy site, the distribution of values is the same and a remote calibration of an 
AQY to that proxy site can correct for baseline drift (offset) and sensitivity changes (gain) and for PM sensors this 

approach can correct for seasonal composition/weather impacts as well

More Information: “A Real-time Calibration and Device Management System for Air 
Quality Sensors Deployed in Hierarchical Networks”, Session 5D, May 13th, 9:50 – 12:10



Data Access & Processing 
• Data accessed: CF_1 data (due to the higher linearity)

• Quality Assurance and Quality Control 
1. function applied to filter “out-of-spec” values 

(or values outside of manufacturer specified bounds)
2. “PurpleAirQC_hourly_AB_03” algorithm applied, 

involves the following steps:
• Invalidate data where: A/B hourly difference > 5 

AND A/B hourly percent difference > 70%
• Invalidate data where: A/B hourly data recovery < 90%
• Hourly-average valid data

• Future AirSensor enhancements: add functions to enable the application of corrections to the sensor data, 
which could support the scalability various correction approaches
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Facilitated via the AirSensor package 
(open-source R package), intended 
to support data access, processing, 

analysis and visualization for 
PurpleAir sensor data

Developed under the STAR Grant Project 
in collaboration with Jonathan Callahan 

(Desert Research Institute)

http://www.aqmd.gov/aq-spec/special-projects/airsensor

http://www.aqmd.gov/aq-spec/special-projects/airsensor


Preliminary Results 
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• Applying MOMA on a monthly basis and 
using the drift detection algorithm results 
reduces the overall error (e.g., MAE and MBE)

• MOMA+drift results in greater improvements 
that MOMA applied on a monthly basis 

• MOMA was applied using data from a 
proxy site ~ 5 miles away  

• Plots depict one year of data, 
hourly-averaged, aggregate of 15 sensors 
co-located at a regulatory monitoring site 
(labeled Ref)



Preliminary 
Results 
• Comparing uncorrected 

CF_1 sensor data to 
CF_1 data corrected using 
the  MOMA+drift 
approach, not only is the 
overall error reduced, 
but the correction seems 
to mitigate some of the 
seasonal effects 

• Plots depict monthly 
aggregate MAE from 15 
sensors co-located at the 
reference site
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CF_atm, no correction CF_1, no correction 

CF_1, MOMA Monthly correction CF_1, MOMA+Drift correction 

corrected



Preserving 
Local Variability 
• A key concern with remote 

calibration techniques is the 
preservation of local variability 
and indications of short-term air 
quality events 

• Initial results indicate that this 
approach to sensor correction 
reduces error, but does not 
impact local trends

• Note the higher R2 between the 
sensor and the co-located Ref 
site as opposed to between the 
sensor and the proxy site
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R2 = 0.63R2 = 0.81

MOMA+drift Sensor vs. Reference (co-located) MOMA+drift Sensor vs. Proxy Site



Conclusions and Next Steps
• Preliminary results indicate MOMA has the potential to improve PA-II sensor data and 

potentially mitigate variability in performance driven by seasonal factors 

• The MOMA approach is scalable and feasible for implementation with large-scale 
stationary networks 

• Publication in progress, assessing MOMA capabilities and potential over multiple years
• Expand analysis to other validation sites

• Optimize MOMA (esp. for events such as wildfires) 

• Compare to other established corrections (e.g., global corrections for PurpleAir PA-II sensors) 

• Conduct pilots using other sensors, to explore the potential of this approach as a 
sensor-agnostic method for correcting and improving sensor data
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