

Evaluation of Low-Cost Particle Sensors for Use in Indoor Air Quality Monitoring and Smart Building Systems

Dr. Andy May

Acknowledgements

- Dr. Jordan Clark
- Dr.* Yangyang Zou, Mr. Matt Young

- Dr. Brent Stephens, Dr. R. Vijayakumar, Dr. Paolo Tronville, Dr. Liping Wang, Mr. Glenn Remington
- Disclaimer: the use of commercial names does <u>not</u> imply ASHRAE endorsement, approval, or certification

The marketplace for indoor air quality monitors is rapidly expanding

www.iqair.com

www.airqualityegg.com

www.foobot.io

www.getawair.com

www.getuhoo.com

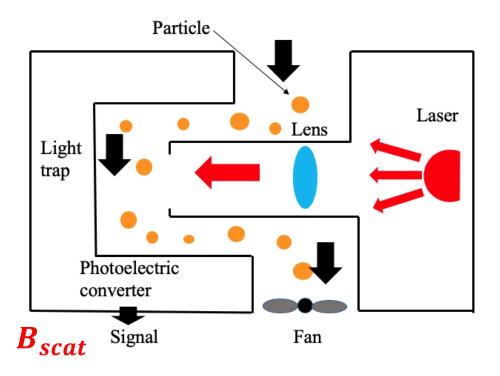
3/3/2021

How well do they perform in buildings?

- Can they reliably detect indoor particle sources?
- Can they communicate with building automation systems?
- What are their upper and lower limits of quantification?
- How do the size and composition of the particles affect their performance?
- Do temperature or relative humidity bias the results?

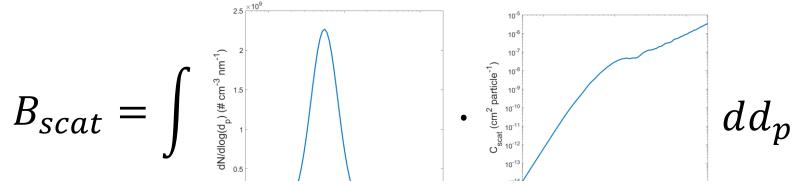
What sensors did we test?

Bare Sensors


- Honeywell HPM
- Sharp GP2Y
- Plantower PMS5003

Integrated Devices

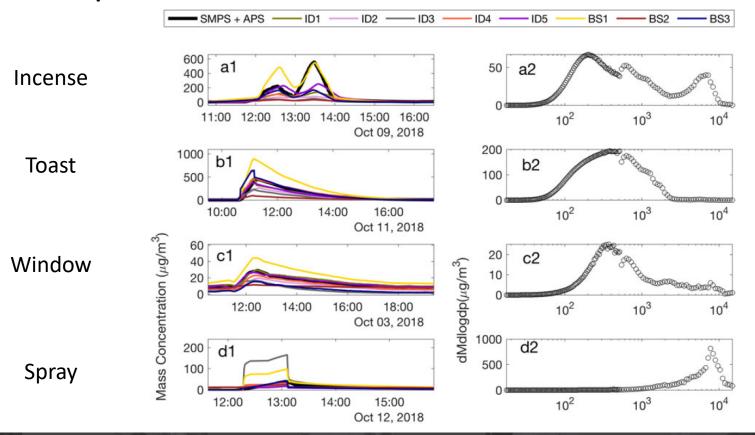
- AirThinx IAQ
- Taking Space AirBeam2
- Dylos DC1100 Pro
- TSI BlueSky
- PurpleAir II



All tested sensors are nephelometers

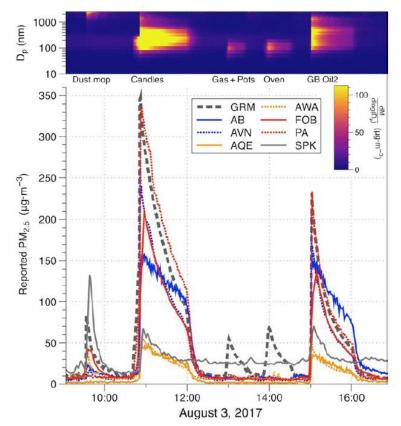
3/3/2021

Operationally, nephelometers output a single value

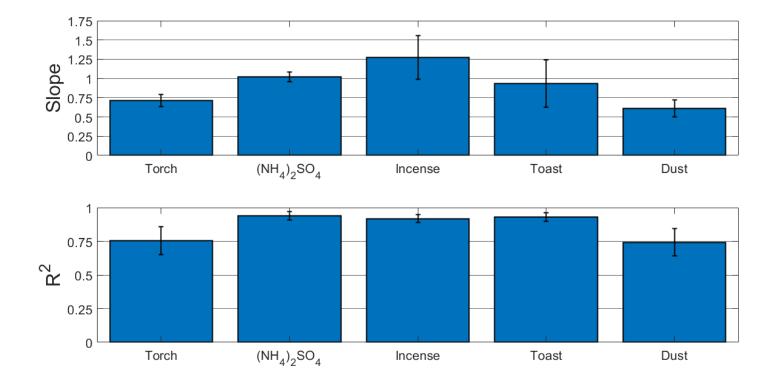


This means that nephelometers cannot truly distinguish between PM₁, PM_{2.5}, and PM₁₀

 $M_{PM} \propto B_{scat}$



Low-cost sensors generally respond to particle source events


Zou et al. (Sci. Technol. Built Environ., 2020)

Low-cost sensors generally respond to particle source events

Singer and Delp (Indoor Air, 2018)

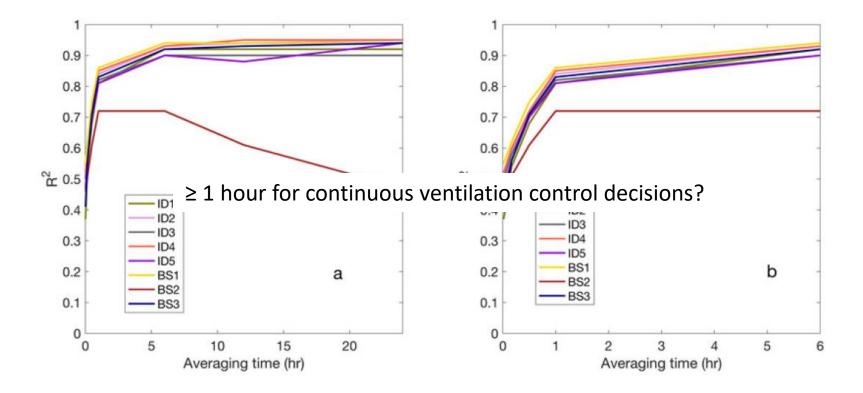
"Event exposure" is variable based on the sensor and the source

Zou et al. (Aerosol Sci. Technol., under review)

3/3/2021

Can the sensors communicate with buildings?

- The short answer is "Yes, they all can"
- Some use building communication protocols
 - Awair (BACnet, Zigbee, LONtalk, MODbus, MSTP)
 - Dylos DC-1700 (custom units for MODbus, Zigbee, etc.)
 - TSI AeroTrak (BACnet with complementary room pressure sensor)

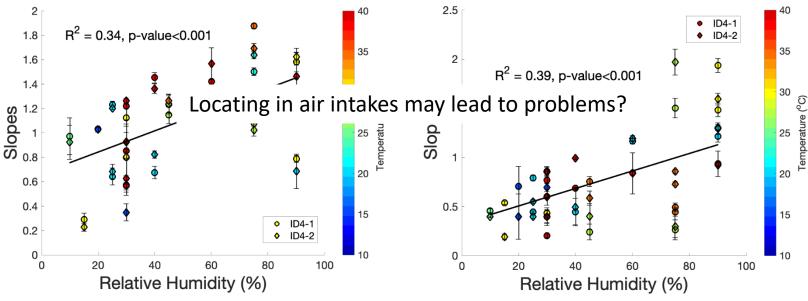

Can the sensors communicate with buildings?

- Some can communicate via Wi-Fi and API
 - AirThinx IAQ
 - Airviz Speck
 - Air Quality Egg (subscription)
 - PurpleAir PA-II
 - IQAir Air Visual Pro (also IFTTT)
 - uHoo (business account)
 - foobot

What else is important with respect to smart building systems?

- All of the bare sensors output an electrical signal
 - If you have the software and hardware know-how, you can make it work
- Some Wi-Fi networks may pose challenges
 - Zikova et al. (*J. Aerosol Sci.*, 2017): "strong Wi-Fi signals are necessary"
 - OSU Wireless could not support Wi-Fi connectivity due to its security settings

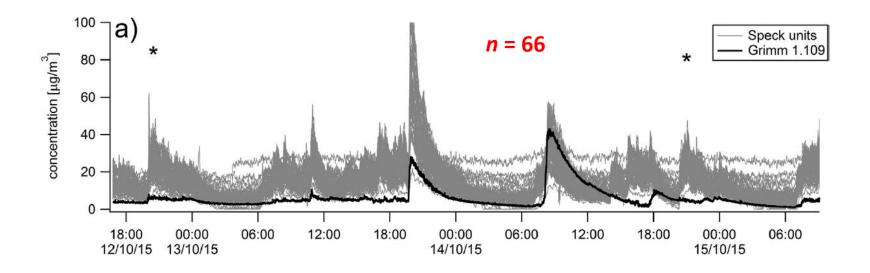
There is better correlation with longer averaging times


Zou et al. (Sci. Technol. Built Environ., 2020)

Increased RH may bias the sensor measurements high

Incense as source

Toast smoke as source



Reference concentration measured at chamber RH

Zou et al. (J. Aerosol Sci., 2021)

Other considerations

The variability can be large among many sensor "replicates"

Zikova et al. (J. Aerosol Sci., 2017)

In our small sample size, there were some sensors that differed

X Axis sensor	Y Axis sensor	Least square	R^2	Reduced major axis	r
ID2-1	ID2-2	Y = 0.937 x + 0.20	0.97	Y = 0.950x + 0.142	0.97
ID2-1	ID2-3	Y = 0.974 x + 0.828	0.96	Y = 0.992x + 0.728	0.95
ID2-2	ID2-3	Y = 1.03x + 0.65	0.99	Y = 1.044x + 0.620	0.98
ID3-1	ID3-2	Y = 0.797x + 1.425	0.64	Y = 1.00x + 0.402	0.62
ID3-1	ID3-3	Y = 0.692x + 0.440	0.80	Y = 0.773x - 0.014	0.81
ID3-2	ID3-3	Y = 0.626x + 0.560	0.65	Y = 0.779x - 0.351	0.62
ID4-1	ID4-2	Y = 1.065x - 0.298	0.99	Y = 1.070x - 0.327	0.99
ID5-1	ID5-2	Y = 1.012x - 0.116	0.99	Y = 1.0144x - 0.1007	0.99
ID5-2	ID5-3	Y = 0.95x - 0.094	0.98	Y = 0.9671 - 0.0317	0.96
ID5-1	ID5-3	Y = 0.981x + 0.075	0.98	Y = 0.9896x - 0.0446	0.99
BS2-1	BS2-2	Y = 0.95x + 11.70	0.77	Y = 1.080x + 11.167	0.75
BS2-1	BS2-3	Y = 1.31x + 11.76	0.36	Y = 2.183x + 7.921	0.34
BS2-2	BS2-3	Y = 1.36x - 3.73	0.45	Y = 2.02x - 13.992	0.45
BS1-1	BS1-2	Y = 0.974x + 0.452	0.93	Y = 1.00x - 0.046	0.93
BS3-1	BS3-2	Y = 0.927x + 0.69	0.91	Y = 0.968x - 0.245	0.92

Zou et al. (Sci. Technol. Built Environ., 2020)

Summary

- Low-cost particle sensors can detect many indoor sources → utility for on-demand air cleaning
- Any particle sensor can communicate with a building (with varying degrees of difficulty)
- Some uncertainties remain
 - Accuracy of sensor output mass concentration
 - Reliability and resiliency of the sensors
 - Timescale for building decision making

Thank you!

- Contact: may.561@osu.edu
- Publications:
 - https://doi.org/10.1080/23744731.2019.1676094
 - <u>https://doi.org/10.1111/ina.12621</u>
 - <u>https://doi.org/10.1016/j.jaerosci.2020.105715</u>