

2018 Air Sensors International Conference (ASIC)

Air Quality Sensor Performance Evaluation Center (AQ-SPEC): Lessons Learnt and New Challenges

Andrea Polidori, Vasileios Papapostolou, and Brandon Feenstra

[^]South Coast Air Quality Management District, Diamond Bar, California

Sensor Performance Evaluation

- Main organizations
 - JRC
 - EPA / ORD
 - SCAQMD (AQ-SPEC)
- Field and/or laboratory testing
- Parameters evaluated
 - FRM/FEM vs sensor correlation (R2)
 - Intra-model variability
 - Accuracy
 - Precision
 - Other
- No recommendation on potential use and application

- Established in July 2014
- Main Goals & Objectives
 - Provide guidance & clarity
 - Promote successful evolution and use of sensor technology
 - Minimize confusion
- Sensor Selection Criteria
 - Commercially available
 - Real- or near-real time
 - Criteria pollutants & air toxics
 - < ~ \$2,000: purchase
 - > ~ \$2,000: lease or borrow

Air Quality Sensor Performance Evaluation Center

• AQ-SPEC

Field Testing

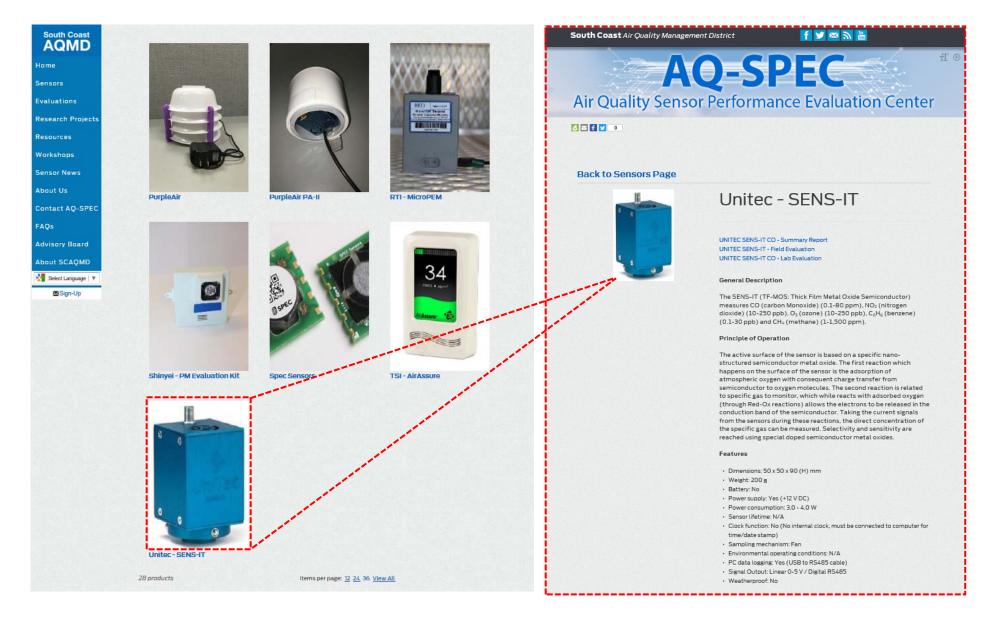
- Co-location with FRM/FEM
- Process:

South Coast

- Sensor tested in triplicates
- Two month deployment
- Locations:
 - Rubidoux station (main)
 - Inland site
 - Fully instrumented
- <u>40+ sensors evaluated to</u>
 <u>date</u>

Laboratory Testing

T and RH controlled: T (0-50 °C); RH (5-95%)


Particle testing

- Particle generation systems
- Particle monitors: mass concentration and size distribution

Gas testing

- Gas generation / dilution system
- Gas monitors: CO, NO_X, O₃, SO₂, H₂S, CH₄/NMHC and <u>VOCs</u>

www.aqmd.gov/aq-spec

			PM	Ser	nsors		
Sensor Image	Manufacturer (Model)	Туре	Pollutant(s)	Approx. Cost (USD)	[*] Field R ²	*Lab R ²	Summary Report
	AethLabs (microAeth)	Optical	BC (Black Carbon)	~\$6,500	$R^2 \sim 0.79$ to 0.94		
	Air Quality Egg (Version 1)	Optical	PM	~\$200	R ² ~ 0.0		
	Air Quality Egg (Version 2)	Optical	PM	~\$240	$\begin{array}{l} PM_{2.5} : \ R^2 \sim \ 0.79 \ to \ 0.85 \\ PM_{10} : \ R^2 \sim \ 0.31 \ to \ 0.40 \end{array}$		
	Alphasense (OPC-N2)	Optical	PM _{1.0} , PM _{2.5} & PM ₁₀	~\$450	$\begin{array}{l} PM_{1.0} \colon R^2 \sim 0.63 \text{ to } 0.82 \\ PM_{2.5} \colon R^2 \sim 0.38 \text{ to } 0.80 \\ PM_{10} \colon R^2 \sim 0.41 \text{ to } 0.60 \end{array}$	R ² ~ 0.99	PDF (1,291 KB)
9	Dylos (DC1100)	Optical	PM _(0.5-2.5)	~\$300	$R^2 \sim 0.65$ to 0.85	$R^2 \sim 0.89$	PDF (1,384 KB)
	Foobot	Optical	PM2.5	~\$200	$R^2 \sim 0.55$		
	HabitatMap (AirBeam)	Optical	PM _{2.5}	~\$200	$R^2 \sim 0.65$ to 0.70	$R^2 \sim 0.87$	PDF (1,144 KB)
E	Hanvon (Hanvon N1)	Optical	PM2.5	~\$200	$R^2 \sim 0.52$ to 0.79		
	MetOne (Neighborhood Monitor)	Optical	PM _{2.5}	~\$1,900	$R^2\sim 0.53$ to 0.67		
0	Moji China (Airnut)	Optical	PM2.5	~\$150	$R^2 \sim 0.81$ to 0.88		
	Naneos (Partector)	Electrical	PM (LDSA: Lung- Deposited Surface Area)	~\$7,000	$\begin{array}{l} PM_{1.0}; \; R^2 \sim 0.1 \\ PM_{2.5}; \; R^2 \sim 0.2 \end{array}$		
2)	Origins (Laser Egg)	Optical	PM2.5 & PM10	~\$200	PM _{2.5} : $R^2 \sim 0.58$ PM ₁₀ : $R^2 \sim 0.0$		
	Perkin Elmer (ELM)	Optical	PM	~\$5,200	$R^2 \sim 0.0$		
	PurpleAir (PA-I)	Optical	PM _{1.0} , PM _{2.5} & PM ₁₀	~\$150	$\begin{array}{l} \text{PM}_{1.0} \colon R^2 \sim 0.93 \text{ to } 0.95 \\ \text{PM}_{2.5} \colon R^2 \sim 0.77 \text{ to } 0.92 \\ \text{PM}_{10} \colon R^2 \sim 0.32 \text{ to } 0.44 \end{array}$	$\begin{array}{c} \text{PM}_{1.0};\\ \text{R}^2 \sim 0.95\\ \text{PM}_{2.5};\\ \text{R}^2 \sim 0.99\\ \text{PM}_{10};\\ \text{R}^2 \sim 0.97 \end{array}$	PDF (1,072 KB)
2	PurpleAir (PA-II)	Optical	PM1.0, PM2.5 & PM10	2.5 \sim \$200 PM1.0: $R^2 \sim 0.96$ to 0.98 PM2.5: $R^2 \sim 0.93$ to 0.97 PM10: $R^2 \sim 0.66$ to 0.70		$\begin{array}{c} \text{PM}_{1.0}\text{:} \\ \text{R}^2 \sim 0.99 \\ \text{PM}_{2.5}\text{:} \\ \text{R}^2 \sim 0.99 \\ \text{PM}_{10}\text{:} \\ \text{R}^2 \sim 0.95 \end{array}$	PDF (1,328 KB)
	RTI (MicroPEM)	Optical	PM _{2.5}	~\$2,000	$R^2 \sim 0.65$ to 0.90	R ² ~ 0.99	PDF (1,087 KB)
0	Shinyei (PM Evaluation Kit)	Optical	PM _{2.5}	~\$1,000	$R^2 \sim 0.80$ to 0.90	R ² ~ 0.93	PDF (1,156 KB)
E ;	Speck	Optical	PM _{2.5}	~\$150	$R^2 \sim 0.32$		
	TSI (AirAssure)	Optical	PM _{2.5}	~\$1,500	$R^2 \sim 0.82$		

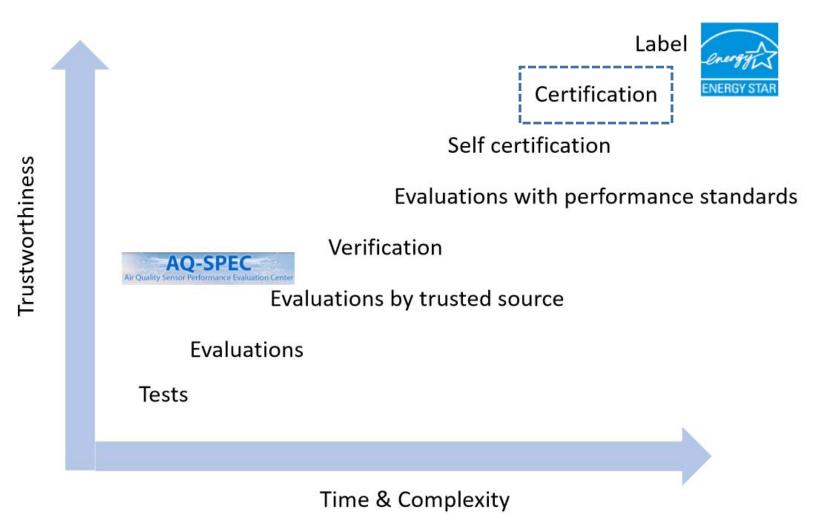
Results (PM)

Most PM sensors showed:

- Minimal down time
- Moderate intra-model variability
- Strong correlation (R2) with EPA "approved" instruments (e.g., FEM)

However...

- Sensor "calibration" is needed in most cases
- Very small particles (e.g. < 0.5 μm) are not detected
- Bias in algorithms used to convert particle counts to particle mass


Gaseous Sensors							
Sensor Image	Manufacturer (Model)	Туре	Pollutant(s)	Approx. Cost (USD)	*Field R ²	*Lab R ²	Summary Report
-	2B Technologies (POM)	UV absorption (FEM Method)	O ₃	~ \$ 4,500	R ² ~ 1.00	R ² ~ 0.99	PDF (1,295 KB)
9	Aeroqual (S-500)	Metal Oxide	O ₃	~\$500	$R^2 \sim 0.85$	$R^2 \sim 0.99$	PDF (1,197 KB)
5	Air Quality Egg (Version 1)	Metal Oxide	CO, NO ₂ & O ₃	~\$200	CO: $R^2 \sim 0.0$ NO ₂ : $R^2 \sim 0.40$ O ₃ : $R^2 \sim 0.85$		
	Air Quality Egg (Version 2)	Electrochem	CO & NO ₂	~\$240	CO: $R^2 \sim 0.0$ NO ₂ : $R^2 \sim 0.0$		
	Air Quality Egg (Version 2)	Electrochem	O3 & SO2	~\$240	O_3 : R ² ~ 0.0 to 0.20 SO ₂ : R ² n/a		
	AQMesh (v.4.0) (Discontinued)	Electrochem	CO, NO, NO ₂ & O ₃	~\$10,000	CO: $R^2 \sim 0.42 \text{ to } 0.80$ NO: $R^2 \sim 0.0 \text{ to } 0.44$ NO ₂ : $R^2 \sim 0.0 \text{ to } 0.46$ O ₃ : $R^2 \sim 0.46 \text{ to}$ 0.83		
	Perkin Elmer (ELM)	Metal Oxide	NO, NO ₂ & O ₃	~ <mark>\$</mark> 5,200	NO: $R^2 n/a$ NO ₂ : $R^2 \sim 0.0$ O ₃ : $R^2 \sim 0.89$ to 0.96		
R	Smart Citizen Kit	Metal Oxide	CO, NO ₂	~\$200	CO: $R^2 \sim 0.50$ to 0.85 NO ₂ : $R^2 \sim 0.0$		
24	Spec Sensors	Electrochem	CO, NO ₂ & O ₃	~\$500	$\begin{array}{c} \text{CO:} \\ \text{R}^2 \sim 0.84 \text{ to } 0.90 \\ \text{NO}_2\text{:} \\ \text{R}^2 \sim 0.0 \text{ to } 0.16 \\ \text{O}_3\text{:} \\ \text{R}^2 \sim 0.0 \text{ to } 0.24 \end{array}$		
U	UNITEC (SENS-IT)	Metal Oxide	CO, NO ₂ & O ₃	~\$2,200	CO: $R^2 \sim 0.33 \text{ to } 0.43$ NO_2 : $R^2 \sim 0.60 \text{ to } 0.65$ O_3 : $R^2 \sim 0.72 \text{ to}$ 0.83	CO: $R^2 \sim 0.99$ O3: $R^2 \sim 0.82$ to 0.90	CO: PDF (1,283 KB) O3: PDF (1,177 KB)

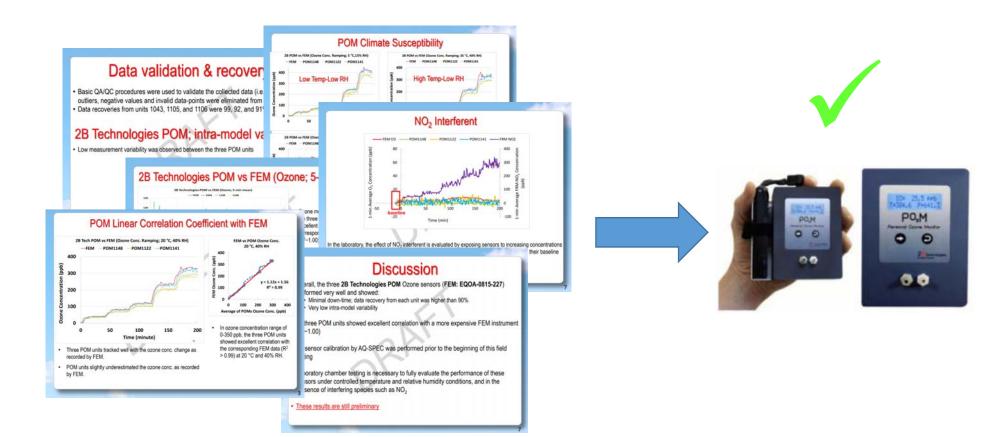
Results (Gases)

Most gaseous sensors showed:

- Acceptable data recovery
- Wide intra-model variability range
- CO; NO; O3 (when measured alone): good correlation with FRMs
- O3 + NO2: potential O3/NO2 interference
- SO2; H2S; VOC: difficult to measure with available sensors

Sensor Performance Testing: What is Needed?

TD Environmental Services


- PM2.5 and O3 sensors seems to be good candidates
- Field testing
 - Establish various testing centers across the US and/or around the world
 - Different RH/T environments (P also seems to impact performance)
 - Different PM composition
 - Wide range of concentrations
 - Consistent use of FRM/FEM instruments for comparison purposes
- Lab (chamber) testing
 - Account for a wide/representative RH/T range
 - Specific aerosol composition (e.g., Arizona road dust)
 - Specific range of concentrations
 - Ability to test for multi-pollutant interference (e.g., O3/NO2)
 - Consistent use of FRM/FEM instruments for comparison purposes
- Standardized testing protocols
- Well established performance parameters and standards
- Certification model: Multi-tier vs pass/fail

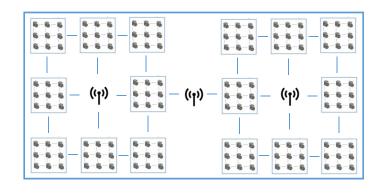
• <u>Tiered</u>: different performance targets for different sensor applications. Example:

Tier	Uses	Pollutants	Precision	Accuracy	Sensitivity
I	Regulatory or compliance monitoring	ozone, PM _{2.5}	1		1
II	Fenceline and community monitoring	ozone, PM _{2.5} , VOC			
111	Area or source characterization; supplement monitoring networks	ozone, PM _{2.5} , NO2, VOC			
IV	Information, personal monitoring, and education	ozone, PM _{2.5} , NO2, CO, VOC and others			

Pass / Fail:

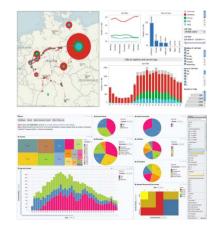
- One set of performance targets
- Target specific user / application (e.g., community monitoring)
- Easier to understand for non-technical audience
- Helps translating complexity into a simple choice

- A sensor certification program is desirable but very expensive / time consuming to implement
 - Multiple field testing locations
 - Multiple laboratory testing facilities
 - Extended testing time
- The U.S. EPA is leading the way at the National level
 - E-Enterprise
- On-going discussion in California between CARB, SCAQMD, BAAQMD and other air districts
 - Sensor performance verification
 - ASTM method development
 - Other models


Sensor Deployment Challenges

Sensor Unit

 Assume you have a "certified" PM2.5 sensor


Sensor Network

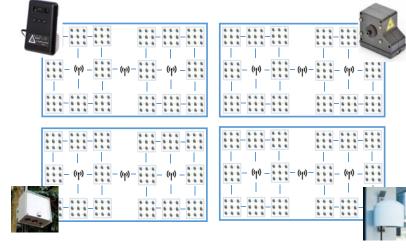
- Design and configuration
- Data communication (e.g., cell; wi-fi; LoRa; other)
- "Calibration" procedures
- QA/QC requirements
- Other

Different sensor networks comprised of the same "certified" sensor may still produce inconsistent data / results

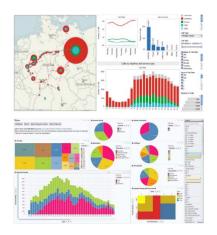
Network Data

- Backend application and data handling procedures
- Validation and other QA/QC requirements
- Correction algorithms / models
- Time averaging
- Analysis and interpretation
- Integration with existing network and other available data

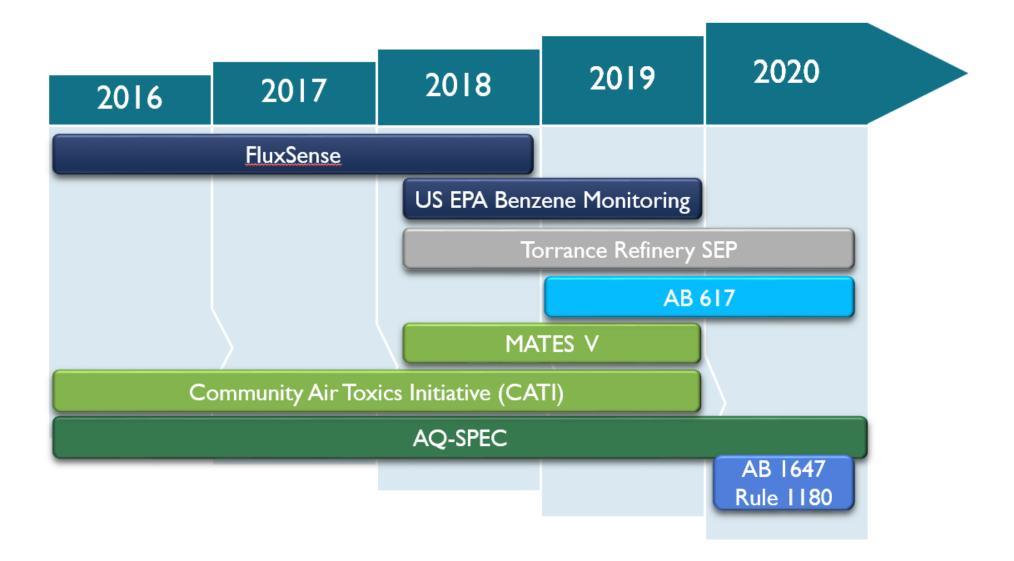
Sensor Deployment Challenges


Sensor Units

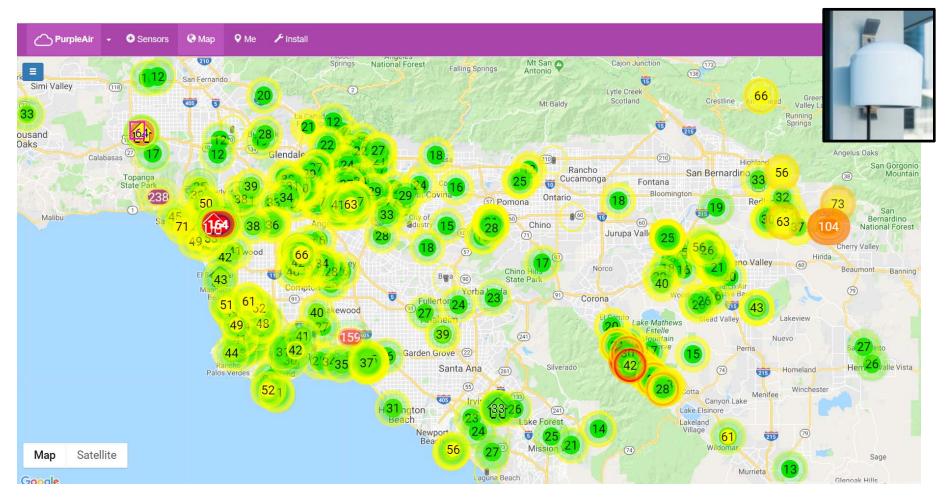
 Assume you have 4 different "certified" PM2.5 sensors


Sensor Networks

- Design and configuration
- Data communication (e.g., cell; wi-fi; LoRa; other)
- "Calibration" procedures
- QA/QC requirements
- Other

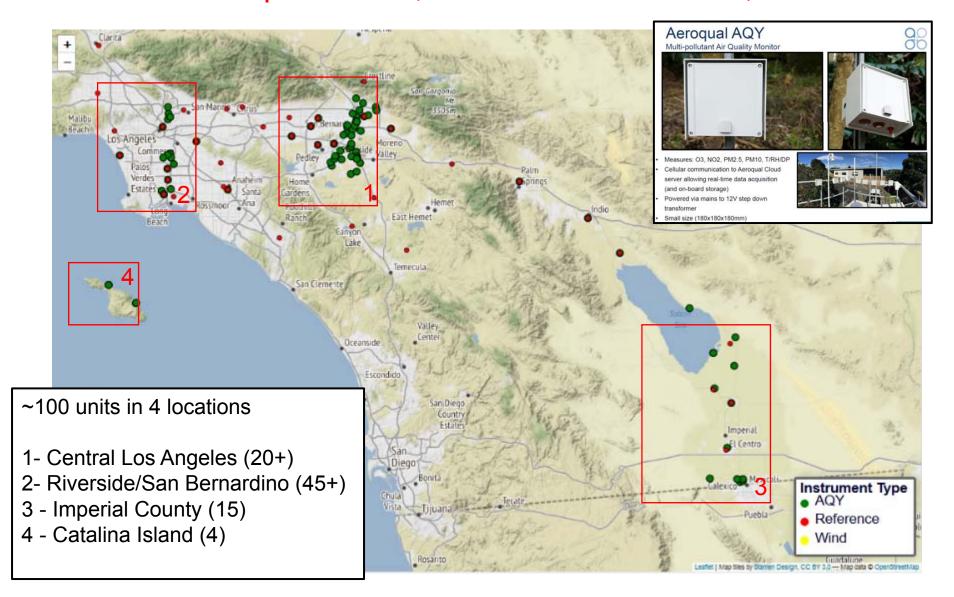

Different sensor networks comprised of different "certified" sensors measuring the same pollutant(s) will probably produce inconsistent data / results

Networks Data

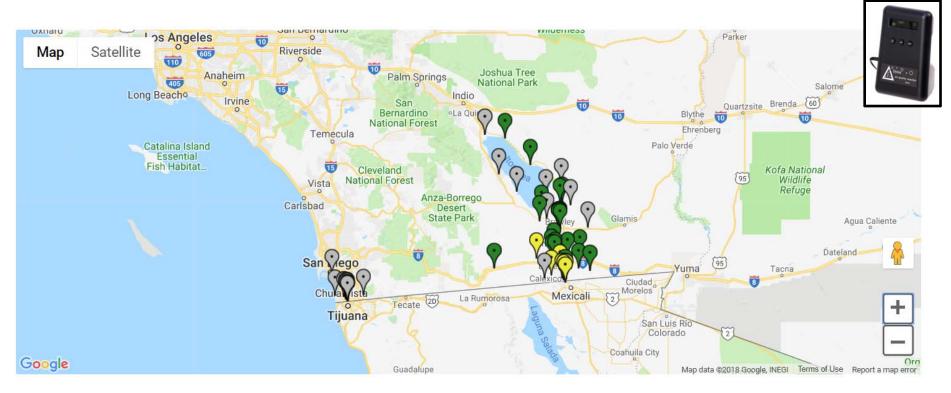


- Backend application and data handling procedures
- Validation and other QA/QC requirements
- Analysis and interpretation
- Mapping
- Correction algorithms / models
- Time averaging
- Integration with existing network data

Current and Upcoming Air Monitoring Initiatives at the SCAQMD



PM2.5 Sensor Networks in the SCAB (2018) PurpleAir



Note: Values are reported as AQI units

PM2.5 Sensor Networks in the SCAB (2018) Aeroqual AQY (PM2.5, O3, and NO2)

PM2.5 Sensor Networks in the SCAB (2018) IVAN

Conclusions

- Sensors and sensor networks:
 - Great <u>survey tools</u> for hot-spots identification and to better understand spatial and temporal variations of PM2.5, O3, and NO2
 - Although they do not produce actionable data <u>their measurements can lead</u>
 <u>to action</u>. Can be used to support community monitoring
- Need for a <u>sensor certification program</u> to provide users with the knowledge to appropriately select sensors for specific applications
 - Additional guidance for air districts to correctly implement current/upcoming state and local rules (e.g., AB617 and Rule 1180)
- Many challenges ahead, but it is difficult to see a future where sensors and sensor networks will not be integrated in existing ambient air monitoring networks

Thanks!

The AQ-SPEC Team

- Dr. Jason Low
- Dr. Andrea Polidori
- Dr. Vasileios Papapostolou
- Brandon Feenstra
- Dr. Hang Zhang
- Berj Der Boghossian
- Dr. Michelle Kuang
- Dr. Ashley Collier (NEW)
- Dr. Wilton Mui (NEW)